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Strategic decision-making in imperfect-information games is an important problem in artificial 
intelligence. Counterfactual regret minimization (CFR), a family of iterative algorithms, has been 
the workhorse for solving these types of games since its inception. In recent years, a series of novel 
CFR variants have been proposed, significantly improving the convergence rate of vanilla CFR. 
However, most of these new variants are hand-designed by researchers through trial and error, 
often based on different motivations, which generally requires a tremendous amount of effort 
and insight. This work proposes AutoCFR, a systematic framework that meta-learns novel CFR 
algorithms through evolution, easing the burden of manual algorithm design. We first design a 
search language that is rich enough to represent various CFR variants. We then exploit a scalable 
regularized evolution algorithm with a set of acceleration techniques to efficiently search over 
the combinatorial space of algorithms defined by this language. The learned novel CFR algorithm 
can generalize to new imperfect-information games not seen during training and performs on 
par with or better than existing state-of-the-art CFR variants. In addition to superior empirical 
performance, we also theoretically show that the learned algorithm converges to an approximate 
Nash equilibrium. Extensive experiments across diverse imperfect-information games highlight 
the scalability, extensibility, and generalizability of AutoCFR, establishing it as a general-purpose 
framework for solving imperfect-information games.

1. Introduction

From its inception, artificial intelligence (AI) research has been focusing on building agents that can play games like humans. 
For more than half a century, games have continued to be AI testbeds for novel ideas, and the resulting achievements have marked 
important milestones in the history of AI. Notable examples include the checkers-playing bot Chinook winning a world championship 
against top humans [1], Deep Blue beating Kasparov in chess [2], and AlphaGo defeating Lee Sedol [3] in the complex ancient Chinese 
game Go. Although substantial progress has been made in solving these perfect-information games, in which all players know the exact 
state of the game at every decision point, solving imperfect-information games presents a much more difficult challenge. Imperfect-
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Fig. 1. Convergence speed of four CFR-type algorithms and our learned one in four games. Exploitability measures how well a strategy profile approximates a Nash 
equilibrium. The closer it is to zero, the closer the policy is to Nash equilibrium. NFG-1 and NFG-2 are two-player zero-sum normal-form games. Kuhn Poker is a 
simplified form of poker proposed by [12]. II-Goofspiel(3) represents the imperfect information variant of Goofspiel played with 3 cards. Please refer to Section 4.1
for detailed rules of each game. Different CFR-type algorithms perform distinctively in these games. Our framework learns a new CFR variant performing consistently 
well.

information games model strategic interactions between players with hidden information. Solving this type of games is challenging 
since it requires reasoning under uncertainty about the opponents’ private information. Meanwhile, hidden information is omnipresent 
in real-world decision-making problems, such as negotiation, business, and security, making the research on imperfect-information 
games crucial both theoretically and practically.

In this work, we focus on solving two-player zero-sum imperfect-information games. For these games, the common goal is to find a 
Nash equilibrium [4] in which no player can improve by deviating from this equilibrium. Playing a strategy from a Nash equilibrium 
in a two-player zero-sum game is guaranteed not to lose in expectation even if the opponent uses the best response strategy. As a 
popular method of computing Nash equilibrium, counterfactual regret minimization (CFR) [5] has attracted extensive attention due 
to its sound theoretical guarantee and strong empirical performance. CFR iteratively minimizes the regrets of both players so that the 
time-averaged strategy profile gradually approximates the Nash equilibrium. Over the past decade, many novel CFR variants have 
been proposed [6–9] with faster convergence than the vanilla CFR. For example, CFR+ [6,10] was the key to solve the heads-up limit 
Texas Hold’em poker. Discounted CFR (DCFR) [7] is a family of algorithms that assigns more weight to the regrets and strategies in 
later iterations, which achieves competitive performance compared with other CFR variants. Linear CFR [7,11] is a simplified version 
of DCFR and performs well in practice.

Despite the great success of CFR and its improved variants, all of them are hand-designed by researchers based on different 
motivations, which usually requires a lot of efforts and insights. CFR-type algorithms have many design choices, e.g., new strategy 
calculation, regret accumulation, average strategy calculation, etc. Therefore, it is difficult to systematically consider the space of all 
CFR variants to design effective ones that can efficiently solve across a wide variety of games. As shown in Fig. 1, it is clear that CFR 
variants perform differently in different games, and no one performs consistently well in all cases. Moreover, the actual convergence 
rates of CFR-type algorithms are sometimes different from their theoretical properties. Some variants converge much faster in practice 
despite having worse theoretical bounds (e.g., CFR+). These gaps between theoretical properties and practical performance further 
increase the difficulty of manually designing effective CFR variants, as theory sometimes does not offer substantial guidance for 
creating algorithms with good practical performance. Consequently, designing an algorithm that excels in real applications still 
necessitates a trial-and-error approach.

To ease the burden and limitation of manual algorithm design, we propose AutoCFR, a framework that learns to design better CFR 
variants than researchers could design manually. Specifically, AutoCFR formulates the problem of designing new CFR variants as one 
of meta-learning: an outer loop searches over the space of CFR-type algorithms, and an inner loop performs equilibrium finding using 
the learned algorithm on the meta-training games. The objective of the outer loop is to minimize the distance between the strategy 
obtained by the inner loop and the Nash equilibrium in each meta-training game. Since the No Free Lunch theorem posits that no 
learning algorithm can excel across all domains, it is more pragmatic to develop CFR algorithms suitable for a class of games. Our 
AutoCFR framework precisely adheres to this principle by meta-learning CFR algorithms tailored to specific distributions of games. 
Our ultimate goal is to discover novel CFR variants capable of generalizing to new testing games, which are similar but not identical 
to the meta-training games.

To define the space of CFR-type algorithms, we formalize an domain-specific language for representing CFR algorithms as compu-
tational graphs. This language is expressive enough to represent many existing hand-designed CFR variants as well as other potential 
alternatives. Since efficiently searching over the space of algorithms defined by this language is generally difficult, we exploit a scal-
able regularized evolution [13] algorithm with a bag of carefully designed acceleration techniques for the outer loop optimization. 
Regularized evolution can scale with the number of compute nodes and has been shown effective for searching supervised learning 
and reinforcement learning algorithms [14,15]. We adapt this method to design algorithms for equilibrium finding in imperfect-
information games automatically. We believe that by performing meta-learning in such a rich, combinatorial, open-ended space of 
algorithms, we will discover highly general, efficient CFR-type equilibrium-finding algorithms. To summarize, this paper makes three 
contributions:

• We propose AutoCFR, the first framework to meta-learn novel CFR-type imperfect-information game equilibrium-finding algo-
rithms.

• We design an expressive language to describe the space of CFR-type algorithms and exploit an efficient and scalable evolutionary 
2

algorithm to make the search feasible.
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• We automatically discover new CFR variants with theoretical convergence guarantees, which outperform other state-of-the-art 
CFR variants across multiple imperfect-information games.

This paper is a systematic extension of our preliminary conference version [16] published at AAAI 2022. In particular, the main 
changes to the conference version are detailed as follows. We provide a theoretical analysis of the convergence properties of the 
algorithms learned by our AutoCFR framework, demonstrating that the learned algorithms theoretically converge to an approximate 
Nash equilibrium. We conduct more experimental analysis and ablation studies to verify the effectiveness of our AutoCFR framework. 
We also expand the related work, the method, and the experiment sections in more detail to make the paper more self-contained.

2. Preliminary

In this section, we first provide some notations to formulate imperfect-information games. Next, we introduce some important 
concepts like best response, Nash equilibrium, and exploitability. Finally, we discuss the vanilla CFR algorithm and its typical variants.

2.1. Notations

Imperfect-information games are usually described by a tree-based formalism called extensive-form games. In an extensive-form 
game, there is a finite set  = {1, 2, … , 𝑁} of players, and there is also a special player 𝑐 called chance with a fixed known stochastic 
strategy. History ℎ consists of all actions taken by players and all possible histories in the game tree form the set .  ⊆  are
terminal histories for which no actions are available. 𝑔 ⊑ ℎ refers to the fact that 𝑔 is equal to or a prefix of ℎ. (ℎ) = {𝑎 ∶ ℎ𝑎 ∈}
denotes the actions available in the history, and (ℎ) is the unique player who takes action in the history. For each player 𝑖 ∈ , 
there is a utility function 𝑢𝑖(𝑧) ∶ →ℝ. Δ𝑖 is the range of payoffs reachable by player 𝑖, i.e., Δ𝑖 =max𝑧∈ 𝑢𝑖(𝑧) −min𝑧∈ 𝑢𝑖(𝑧) and 
Δ =max𝑖∈ Δ𝑖.

In imperfect-information games, imperfect information is represented by information sets 𝑖 for each player 𝑖 ∈ . If ℎ, ℎ′ are in 
the same information set 𝐼𝑖 ∈ 𝑖, player 𝑖 cannot distinguish between them. Take poker as an example, all histories in an information 
set differ only in the private card of other players. So we can define (𝐼𝑖) =(ℎ) and (𝐼𝑖) = (ℎ) for arbitrary ℎ ∈ 𝐼𝑖. We define || =max𝑖∈ |𝑖| and || =max𝑖∈ max𝐼𝑖∈𝑖 |(𝐼𝑖)|.

A strategy 𝜎𝑖(𝐼𝑖) assigns a distribution over (𝐼𝑖). 𝜎𝑖(𝐼𝑖, 𝑎) is the probability of player 𝑖 taking action 𝑎. Since all histories in an 
information set belonging to player 𝑖 are indistinguishable, the strategies in each of them are identical. Therefore, for any ℎ1 , ℎ2 ∈ 𝐼𝑖, 
we have 𝜎𝑖(𝐼𝑖) = 𝜎𝑖(ℎ1) = 𝜎𝑖(ℎ2). A strategy profile 𝜎 = {𝜎𝑖|𝜎𝑖 ∈ Σ𝑖, 𝑖 ∈ } is a specification of strategies for all players, where Σ𝑖
refers to the set of all possible strategies for player 𝑖, and 𝜎−𝑖 denotes the strategies of all players other than player 𝑖. 𝑢𝑖(𝜎𝑖, 𝜎−𝑖) is 
player 𝑖’s expected payoff if player 𝑖 plays according to 𝜎𝑖 and the other players play according to 𝜎−𝑖.
𝜋𝜎(ℎ) denotes the history reach probability of ℎ if all players play according to 𝜎. It can be decomposed into each 

player’s contribution, i.e., 𝜋𝜎(ℎ) = 𝜋𝜎
𝑖
(ℎ)𝜋𝜎−𝑖(ℎ), where 𝜋𝜎

𝑖
(ℎ) =

∏
ℎ′𝑎⊑ℎ,(ℎ′)=𝑖 𝜎𝑖(ℎ′, 𝑎) is player 𝑖’s contribution and 𝜋𝜎−𝑖(ℎ) =∏

ℎ′𝑎⊑ℎ,(ℎ′)≠𝑖 𝜎(ℎ′)(ℎ′, 𝑎) is all players’ contribution except player 𝑖. The information set reach probability is defined as 
𝜋𝜎(𝐼𝑖) =

∑
ℎ∈𝐼𝑖 𝜋

𝜎(ℎ). The interval history reach probability from ℎ′ to ℎ is defined as 𝜋𝜎(ℎ′, ℎ) = 𝜋𝜎(ℎ)∕𝜋𝜎(ℎ′) if ℎ′ ⊑ ℎ. 
𝜋𝜎
𝑖
(𝐼𝑖), 𝜋𝜎−𝑖(𝐼𝑖), 𝜋

𝜎
𝑖
(ℎ, ℎ′), 𝜋𝜎−𝑖(ℎ, ℎ

′) are defined similarly.

2.2. Best response and Nash equilibrium

The best response to 𝜎−𝑖 is any strategy BR(𝜎−𝑖) such that 𝑢𝑖(BR(𝜎−𝑖), 𝜎−𝑖) = max𝜎′
𝑖
∈Σ𝑖 𝑢𝑖(𝜎

′
𝑖
, 𝜎−𝑖). The Nash Equilibrium is a 

strategy profile 𝜎∗ = (𝜎∗
𝑖
, 𝜎∗−𝑖) where everyone plays a best response: ∀𝑖 ∈ , 𝑢𝑖(𝜎∗𝑖 , 𝜎∗−𝑖) =max𝜎′

𝑖
∈Σ𝑖 𝑢𝑖(𝜎

′
𝑖
, 𝜎∗−𝑖). The exploitability of 

a strategy 𝜎𝑖 is defined as 𝑒𝑖(𝜎𝑖) = 𝑢𝑖(𝜎∗𝑖 , 𝜎
∗
−𝑖) − 𝑢𝑖(𝜎𝑖, BR(𝜎𝑖)). In an 𝝐-Nash equilibrium, no player has exploitability higher than 𝜖. 

The exploitability of a strategy profile 𝜎 is 𝑒(𝜎) =
∑
𝑖∈ 𝑒𝑖(𝜎𝑖)∕| |. It can be interpreted as the approximation error to the Nash 

equilibrium.

2.3. Counterfactual regret minimization

CFR is an iterative regret minimization algorithm for computing Nash equilibrium in extensive-form imperfect-information 
games [5]. CFR frequently uses counterfactual value, which is the expected payoff of an information set given that player 𝑖
tries to reach it. Formally, for player 𝑖 at an information set 𝐼 ∈ 𝑖 given a strategy profile 𝜎, the counterfactual value of 𝐼 is 
𝑣𝜎
𝑖
(𝐼) =

∑
ℎ∈𝐼 (𝜋𝜎−𝑖(ℎ) 

∑
𝑧∈(𝜋𝜎(ℎ, 𝑧)𝑢𝑖(𝑧)). The counterfactual value of an action 𝑎 in 𝐼 is 𝑣𝜎

𝑖
(𝐼, 𝑎) =

∑
ℎ∈𝐼 (𝜋𝜎−𝑖(ℎ) 

∑
𝑧∈(𝜋𝜎(ℎ𝑎, 𝑧)𝑢𝑖(𝑧)).

CFR typically starts with a uniform random strategy 𝜎1 . On each iteration 𝑇 , CFR first recursively traverses the game tree using 
the strategy 𝜎𝑇 to calculate the instantaneous regret 𝑟𝑇

𝑖
(𝐼, 𝑎) of not choosing action 𝑎 in an information set 𝐼 for player 𝑖, i.e., 

𝑟𝑇
𝑖
(𝐼, 𝑎) = 𝑣𝜎𝑇

𝑖
(𝐼, 𝑎) −𝑣𝜎𝑇

𝑖
(𝐼). Then CFR accumulates the instantaneous regret to obtain the cumulative regret 𝑅𝑇

𝑖
(𝐼, 𝑎) =

∑𝑇
𝑡=1 𝑟

𝑡
𝑖
(𝐼, 𝑎)

and uses regret-matching [17,18] to compute the new strategy for the next iteration:

𝜎𝑇+1
𝑖

(𝐼, 𝑎) =
⎧⎪⎨ 𝑅

𝑇 ,+
𝑖

(𝐼,𝑎)∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼,𝑎′)
,

∑
𝑎′ 𝑅

𝑇 ,+
𝑖

(
𝐼, 𝑎′

)
> 0

1

3

⎪⎩ |(𝐼)| , otherwise
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Table 1

Comparison of CFR and its typical variants (𝛼, 𝛽 , 𝛾 are hyperparameters).

Algorithms Cumulative Regret 𝑅𝑇
𝑖
(𝐼, 𝑎) New Strategy 𝜎𝑇+1

𝑖
(𝐼, 𝑎) Cumulative Strategy 𝐶𝑇

𝑖
(𝐼, 𝑎)

CFR 𝑅𝑇−1
𝑖

(𝐼, 𝑎) + 𝑟𝑇
𝑖
(𝐼, 𝑎) 𝑅𝑇 ,+

𝑖
(𝐼, 𝑎)∕

∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) 𝐶𝑇−1
𝑖

(𝐼, 𝑎) + 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)

CFR+ max(0,𝑅𝑇−1
𝑖

(𝐼, 𝑎) + 𝑟𝑇
𝑖
(𝐼, 𝑎)) 𝑅𝑇 ,+

𝑖
(𝐼, 𝑎)∕

∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) 𝐶𝑇−1
𝑖

(𝐼, 𝑎) + 𝑇 ∗ 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)

Linear CFR 𝑅𝑇−1
𝑖

(𝐼, 𝑎) + 𝑇 ∗ 𝑟𝑇
𝑖
(𝐼, 𝑎) 𝑅𝑇 ,+

𝑖
(𝐼, 𝑎)∕

∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) 𝐶𝑇−1
𝑖

(𝐼, 𝑎) + 𝑇 ∗ 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)

DCFR

𝑅𝑇−1
𝑖

(𝐼, 𝑎) ∗ (𝑇 − 1)𝛼

(𝑇 − 1)𝛼 + 1
+ 𝑟𝑇 (𝐼, 𝑎), if𝑅𝑇−1

𝑖
(𝐼, 𝑎)>0

𝑅𝑇−1
𝑖

(𝐼, 𝑎)∗ (𝑇−1)𝛽

(𝑇−1)𝛽+1
+𝑟𝑇
𝑖
(𝐼, 𝑎), otherwise

𝑅𝑇 ,+
𝑖

(𝐼, 𝑎)∕
∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) 𝐶𝑇−1
𝑖

(𝐼, 𝑎) ∗ ( 𝑇−1
𝑇

)𝛾 + 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)

ECFR
𝑅𝑇−1
𝑖

(𝐼, 𝑎) +𝑤(𝐼, 𝑎) ∗ 𝑟𝑇
𝑖
(𝐼, 𝑎), if 𝑟𝑇

𝑖
(𝐼, 𝑎)>0

𝑅𝑇−1
𝑖

(𝐼, 𝑎) +𝑤(𝐼, 𝑎) ∗ 𝛽, otherwise

𝑅𝑇 ,+
𝑖

(𝐼, 𝑎) ∗𝑤(𝐼, 𝑎)∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) ∗𝑤(𝐼, 𝑎)
𝐶𝑇−1
𝑖

(𝐼, 𝑎) + 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)𝑤(𝐼, 𝑎)

where 𝑅𝑇 ,+
𝑖

(𝐼, 𝑎) = max(𝑅𝑇
𝑖
(𝐼, 𝑎), 0). In two-player zero-sum imperfect-information games, if both players play according to CFR on 

each iteration then their average strategies 𝜎̄𝑇 converge to an 𝜖-Nash equilibrium in (||2||Δ2∕𝜖2) iterations [5]. 𝜎̄𝑇 is calculated 
as:

𝐶𝑇𝑖 (𝐼, 𝑎) =
𝑇∑
𝑡=1

(𝜋𝜎𝑡𝑖 (𝐼)𝜎
𝑡
𝑖 (𝐼, 𝑎)), 𝜎̄

𝑇
𝑖 (𝐼, 𝑎) =

𝐶𝑇
𝑖
(𝐼, 𝑎)∑

𝑎′∈(𝐼)𝐶
𝑇
𝑖
(𝐼, 𝑎′)

,

where 𝐶𝑇
𝑖
(𝐼, 𝑎) denotes player 𝑖’s cumulative strategy for action 𝑎 in information set 𝐼 on iteration 𝑇 .

2.4. CFR variants

Since the birth of CFR, many novel CFR variants have been proposed based on different motivations and greatly improved the 
convergence rate of the vanilla CFR. CFR+ [6,10] is like CFR with three small but effective modifications and converges an order of 
magnitude faster than CFR. First, to immediately reuse an action when it shows promise of performing well instead of waiting for the 
cumulative regret to become positive, CFR+ sets any action with negative cumulative regret to zero on each iteration. Second, CFR+ 
uses a weighted average strategy where iteration 𝑇 is weighted by 𝑇 rather than using a uniformly-weighted average strategy as in 
CFR. Third, CFR+ incorporates alternating updates. In each iteration, one player updates first, and the other player uses those updated 
results as input during its update. This ensures that the second updater employs information that is more current than in CFR. DCFR [7]
is a family of algorithms which discounts prior iterations’ cumulative regrets and dramatically accelerates convergence especially in 
games where some actions are very costly mistakes. Specifically, on each iteration 𝑇 , DCFR multiplies positive cumulative regret by 
𝑇 𝛼∕(𝑇 𝛼 + 1), negative cumulative regret by 𝑇 𝛽∕(𝑇 𝛽 + 1), and cumulative strategy by (𝑇 ∕(𝑇 + 1))𝛾 . We choose the hyperparameters 
𝛼=1.5, 𝛽=0, and 𝛾=2, as suggested by the authors. Linear CFR [7] is a special case of DCFR where iteration 𝑇 ’s contribution to 
cumulative regrets and cumulative strategy is proportional to 𝑇 . ECFR [8] is based on the motivation that instantaneous regret 
reflects the advantage of one action over other actions, and actions with higher instantaneous regrets should be given higher weights. 
In practice, ECFR weights action 𝑎 by 𝑤(𝐼, 𝑎) = exp(𝑟𝑖(𝐼, 𝑎) − 1∕|(𝐼)|∑𝑎∈(𝐼) 𝑟𝑖(𝐼, 𝑎)). The comparison of CFR and its variants is 
shown in Table 1.

3. Automatically design CFR algorithms

In this section, we first describe the overall framework of our proposed AutoCFR. We then describe the search language which 
enables the learning of general CFR-type algorithms and the tailored evolution algorithm, which can efficiently search over the 
algorithm space defined by this language.

3.1. The AutoCFR framework

As mentioned earlier, CFR and its variants have obtained remarkable performance in solving imperfect-information games. This 
success was possible due to decades of persistent efforts by researchers in the game theory and machine learning communities. 
However, as shown in Table 1, there are so many design choices in CFR-type algorithms, making it difficult to consider all of them 
systematically. Manual algorithm design requires many insights and efforts, and we believe that there are better CFR variants that 
humans have not discovered.

Based on the above considerations, we propose AutoCFR, a meta-learning framework that learns to design novel CFR algorithms. 
We use 𝔸 to denote the space of CFR-type algorithms. Given a training set of games 𝔾 = {𝐺𝑖}𝑁𝑖=1, the goal of AutoCFR is to explore 
this large space of algorithms for an optimal and generalizable 𝐴∗ ∈ 𝔸, which not only performs well on 𝔾 but also generalizes to 
the unknown testing games 𝔾̂. The testing games 𝔾̂ and the training games 𝔾 are distinct but share similar characteristics. These 
similarities are crucial for the generalization performance of the meta-learned CFR algorithm. Formally, AutoCFR’s training objective 
4

function is:
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𝐴∗ = argmax
𝐴∈𝔸

[∑
𝐺∈𝔾
𝑊𝐺 Eval(𝐴,𝐺)

]
, (1)

where Eval(𝐴, 𝐺) is the inner loop procedure that evaluates algorithm 𝐴’s performance in the training game 𝐺. In AutoCFR, we 
meta-learn the optimal CFR variant on multiple meta-training games simultaneously, each of which can be seen as a learning task. 
Therefore, this is essentially a multi-task learning problem. The game weights 𝑊𝐺 are used to balance the learning of different tasks, 
which are specified by cross-validation. To calculate Eval(𝐴, 𝐺), we first use 𝐴 to iterate 𝑀 times in 𝐺 and calculate the exploitability 
𝐸𝐺
𝐴

of the obtained average strategy. We then use the normalized exploitability to summarize the performance (score) of 𝐴, i.e.,

Eval(𝐴,𝐺) = min

(
𝑆𝐺,

log𝐸𝐺CFR − log𝐸𝐺
𝐴

log𝐸𝐺CFR − log𝐸𝐺DCFR

)
, (2)

where 𝐸𝐺CFR is the baseline vanilla CFR’s exploitability, 𝐸𝐺DCFR is the state-of-the-art DCFR’s exploitability in 𝐺. 𝑆𝐺 is the predefined 
maximum score under game 𝐺.

Here, we provide a detailed explanation of the motivation behind Equation (2). In Equation (2), we employ two commonly used 
normalization techniques, namely log normalization and min-max normalization, to obtain a better numerical distribution of scores. 
Considering the wide range of exploitability which spans multiple orders of magnitude, we first employ log normalization to normalize 
𝐸𝐺A as log𝐸𝐺A . Log normalization is particularly useful when dealing with data that has a wide range of values. We then utilize min-

max normalization to rescale log𝐸𝐺A within a specific range, i.e., 
MAX−log𝐸𝐺

A
MAX−MIN

, where MAX and MIN are the maximum and minimum 
values. The better 𝐴 performs, the lower its log exploitability log𝐸𝐺A , and the higher its score. The performance of vanilla CFR is 
generally the worst, with relatively high log exploitability log𝐸𝐺CFR; thus, log𝐸𝐺CFR can be considered an approximation of MAX. 
DCFR, currently a strong variant of CFR, exhibits lower log exploitability log𝐸𝐺DCFR and can be regarded as an approximation of MIN. 

So, after min-max normalization, the score of 𝐴 is calculated as 
log𝐸𝐺

CFR
−log𝐸𝐺

𝐴

log𝐸𝐺
CFR

−log𝐸𝐺
DCFR

. Finally, to avoid algorithm 𝐴 overfitting to 𝐺, we 

have imposed a limit on the maximum score that 𝐴 can achieve in 𝐺. So, the final score of 𝐴 on 𝐺 is min
(
𝑆𝐺,

log𝐸𝐺
CFR

−log𝐸𝐺
𝐴

log𝐸𝐺
CFR

−log𝐸𝐺
DCFR

)
which recovers Equation (2).

In summary, AutoCFR’s outer loop searches over the space of CFR-type algorithms (i.e., 𝔸). Its inner loop performs equilibrium 
finding using the algorithm 𝐴 ∈ 𝔸 proposed by the outer loop on the meta-training games 𝔾. The objective is to find algorithm 
𝐴∗ with a maximal weighted score over the set of training games. We believe that by performing meta-learning in a rich space of 
algorithms and with diverse training games, we will automatically discover novel, efficient, and generalizable CFR variants. Next, 
we will formally define the search space of the CFR algorithm in Section 3.2. Then, we will introduce the adopted search algorithm 
in Section 3.3, and finally, discuss the selection of training and testing games in Section 4.1.

3.2. Search language

Each iteration 𝑇 of the CFR-type algorithms consists of two steps, i.e., policy evaluation and policy update. In the first step, 
the algorithm traverses the game tree using the current strategy 𝜎𝑇 to collect the instantaneous regrets 𝑟𝑇 (𝐼, 𝑎) and some auxiliary 
information such as the reach probabilities, etc. The second step exploits the collected data to obtain a new strategy 𝜎𝑇+1 for the next 
iteration. For example, in vanilla CFR, the second step accumulates regrets and computes a new strategy using regret-matching. As 
shown in Table 1, the main difference among CFR variants is mostly in the second step, i.e., calculating the cumulative regret, the 
new strategy, and the cumulative strategy.

To better describe the space of CFR-type algorithms, the search language should be rich enough to represent existing CFR variants 
while enabling the learning of new algorithms that generalize to a wide range of games. Similar to [19,15], we describe the CFR-type 
algorithms as general computer programs with a domain-specific language. The programs are comprised of two-component functions, 
i.e., PE (policy evaluation), and PU (policy update). More specifically, we express 𝐴 ∈ 𝔸 as a computational graph, i.e., a directed 
acyclic graph of nodes. There are three kinds of nodes:

• Input nodes represent the input to the program 𝐴 and include the current strategy 𝜎𝑇 , the cumulative regret 𝑅𝑇−1, the cumu-
lative strategy 𝐶𝑇−1, the current iteration 𝑇 , constant numbers, etc.

• Operation nodes define the mathematical operations which compute outputs given inputs from parent nodes. This includes 
operators from basic math, linear algebra, probability, and statistics. Inputs and outputs to nodes in the computational graph 
have two different data types, i.e., vector 𝕍 and scalar ℝ. For example, the current strategy 𝜎𝑇

𝑖
(𝐼), cumulative regret 𝑅𝑇−1

𝑖
(𝐼)

are vectors, and the current iteration 𝑇 , constant numbers are scalars. Table 2 shows the full list of operation nodes.
• Output nodes are the outputs of program 𝐴 which includes the new strategy 𝜎𝑇+1, the updated cumulative regret 𝑅𝑇 , and the 

updated cumulative strategy 𝐶𝑇 .

Fig. 2 visualizes the computational graphs of CFR, CFR+, and DCFR. Our search language is highly flexible and can represent 
many state-of-the-art CFR variants, as well as many other potential alternatives, which lays the foundation for discovering better 
CFR variants. To limit the search space and prioritize more interpretable and computational-efficient algorithms, we limit the total 
5

number of operation nodes of the computation graph to 30.
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Table 2

The complete list of operations nodes. 𝕍∕ℝ indicates the variable’s type is vector/scalar. Operations 
will broadcast, i.e., adding a scalar to a vector means adding the scalar to each element of the vector.

Operation Inputs Input Types Output Output Type Description

Add 𝑎, 𝑏⃗ 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎+ 𝑏⃗
Minus 𝑎, 𝑏⃗ 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎− 𝑏⃗
Mul 𝑎, 𝑏⃗ 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎 ∗ 𝑏⃗
Max 𝑎, 𝑏⃗ 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 =max(𝑎, 𝑏⃗)
Min 𝑎, 𝑏⃗ 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 =min(𝑎, 𝑏⃗)
Div 𝑎, 𝑏 𝕍∕ℝ,ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎∕𝑏
Pow 𝑎, 𝑏 𝕍∕ℝ,ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎𝑏

LT 𝑎, 𝑏 𝕍∕ℝ,ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝐈𝑎<𝑏
GE 𝑎, 𝑏 𝕍∕ℝ,ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝐈𝑎≥𝑏
Exp 𝑎 𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑒𝑎

Sum 𝑎 𝕍 𝑐 ℝ 𝑐 = sum(𝑎)
Mean 𝑎 𝕍 𝑐 ℝ 𝑐 =mean(𝑎)

Normalize 𝑎 𝕍 𝑐 𝕍 𝑐 =

{
𝑎∕ sum(𝑎) sum(𝑎) > 0

1⃗∕ len(𝑎)otherwise

Fig. 2. Our search language can represent existing CFR variants. (a)(b)(c) visualize the computational graphs of CFR, CFR+, and DCFR. Moreover, this language 
enables the description of potentially better CFR variants.

3.3. Evolutionary search algorithm

The outer loop of AutoCFR is to find CFR variants 𝐴∗ that work effectively in the training games 𝔾. However, evaluating thousands 
of algorithms from the space 𝔸 over a wide range of games in 𝔾 is prohibitively expensive. Moreover, changing a single node in the 
computational graph can drastically change an algorithm’s behavior, making the objective function in Equation (1) non-smooth. We 
use the regularized evolution algorithm [13] as the search method due to its simplicity and efficiency for this type of search problems, 
which has made remarkable breakthroughs [20,21,15,22,23] in the AutoML community recently. Regularized evolution uses a queue 
to maintain a population of 𝑃 programs which can be randomly initialized or initialized by several known programs. The population 
is improved through cycles. In each cycle, 𝑇 < 𝑃 programs are first selected, and the program with the highest score is chosen as the 
parent program. Then the parent program is mutated to obtain the child program. The child program is added to the queue while the 
oldest program in the queue is removed. We use a simple type of mutation, i.e., randomly select a node for replacement, randomly 
select an operation with the same output type as that node, and finally choose the inputs for this operation randomly.

There exists a combinatorially large number of algorithms in 𝔸. Furthermore, the inner loop of evaluating a single algorithm 
𝐴 in a game 𝐺, i.e., calculating Eval(𝐴, 𝐺), requires multiple CFR-type iterations, which can take up a significant amount of time. 
Avoiding needless computation and parallelism is essential to make the outer loop more tractable. By taking inspiration from efforts 
in the AutoML community [24], we extend regularized evolution with a bag of tailored acceleration techniques to make the outer 
loop optimization more efficient. The complete training procedure is outlined in Algorithm 1.

Program validity check. We perform basic checks to rule out and skip evaluating invalid mutated programs. Specifically, we 
randomly generate 100 valid samples and input them into the mutated program 𝐴. If 𝐴 fails to satisfy the following rules, we discard 
it and mutate the parent program again. For example, illegal values (e.g., nan, inf) and exceptions should not be generated when exe-
cuting 𝐴; the action probabilities of the current and average strategies produced by 𝐴 should be greater than zero and sum to one, etc.

Functional equivalence check. Since our search language is highly flexible, there are many non-obvious ways of getting func-
tionally equivalent programs. To find duplicates, we generate a hash code for each program. Specifically, we input 20 random samples 
6

into the program and concatenate the outputs as its code. If 𝐴’s code is the same as the code of the previously evaluated program 𝐴′ , 
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Algorithm 1: AutoCFR’s training procedure.

Input: training games 𝔾, game weights 𝑊𝐺 , hurdle game 𝐺ℎ , CFR variants {𝐴̂}, cycle number 𝑁 , population size 𝑃 , tournament size 𝑇
1 Initialize population |ℙ| = 𝑃 with an empty queue;
2 Initialize history set ℍ ← ∅;

3 for algorithm 𝐴̂ in {𝐴̂} do

4 𝐴̂.𝑠𝑐𝑜𝑟𝑒 ←
∑
𝐺∈𝔾𝑊𝐺 Eval(𝐴̂, 𝐺) ⊳(Algorithm 2);

5 Add 𝐴̂ to ℍ and ℙ;

6 for 𝑛 = 0 to 𝑁 do

7 tournament set 𝕋 ← ∅;
8 while |𝕋 | < 𝑇 do

9 randomly pick a candidate 𝐴𝑐 from ℙ;
10 add 𝐴𝑐 to 𝕋 ;

11 parent algorithm 𝐴 ← highest-scored one in 𝕋 ;
12 child algorithm 𝐴′ ← Mutate(𝐴);
13 𝐴′.𝑣𝑎𝑙𝑖𝑑 ← ValidityCheck(𝐴′);
14 𝐴′.ℎ𝑢𝑟𝑑𝑙𝑒_𝑠𝑐𝑜𝑟𝑒 ← Eval(𝐴′ , 𝐺ℎ);
15 𝐴′.ℎ𝑎𝑠ℎ ← HashEncoding(𝐴′);
16 hurdle threshold 𝜂 ← Percentile(ℙ, 75𝑡ℎ);
17 if 𝐴′.𝑣𝑎𝑙𝑖𝑑 and 𝐴′ .ℎ𝑢𝑟𝑑𝑙𝑒_𝑠𝑐𝑜𝑟𝑒 >= 𝜂 then

18 if ∃𝐴𝑡𝑒𝑚𝑝 ∈ℍ, 𝐴𝑡𝑒𝑚𝑝.ℎ𝑎𝑠ℎ==𝐴′ .ℎ𝑎𝑠ℎ then

19 𝐴′.𝑠𝑐𝑜𝑟𝑒 ← 𝐴𝑡𝑒𝑚𝑝.𝑠𝑐𝑜𝑟𝑒
20 else

21 𝐴′.𝑠𝑐𝑜𝑟𝑒 ←
∑
𝐺∈𝔾𝑊𝐺 Eval(𝐴′, 𝐺)

22 Add 𝐴′ to ℍ and the circular queue ℙ
Output: 𝐴∗ with the highest score

Algorithm 2: Inner loop procedure Eval(𝐴, 𝐺).
Input: Candidate algorithm 𝐴, training game 𝐺, iterations 𝑀 , exploitability 𝐸𝐺CFR , 𝐸𝐺DCFR, maximum score 𝑆𝐺

1 Initialize strategy 𝜎1(𝐼, 𝑎) ← 1∕|(𝐼)|;
2 Initialize cumulative regret 𝑅0(𝐼, 𝑎) ← 0;
3 Initialize cumulative strategy 𝐶0(𝐼, 𝑎) ← 0 ;
4 for 𝑇 = 1 to 𝑀 do

5 𝜋𝜎
𝑇

, 𝑟𝑇 ← 𝐴.PE(𝐺, 𝜎𝑇 );
6 𝑖𝑛𝑝𝑢𝑡𝑠 = {𝜎𝑇 , 𝑅𝑇−1, 𝜋𝜎𝑇 , 𝐶𝑇−1, 𝑟𝑇 , 𝑇 , …};
7 𝜎𝑇+1, 𝑅𝑇 , 𝐶𝑇 ← 𝐴.PU(𝑖𝑛𝑝𝑢𝑡𝑠);
8 𝜎̄𝑀 ← Normalize(𝐶𝑀 );
9 𝐸𝐺

𝐴
← 𝜎̄𝑀 ’s exploitability on 𝐺;

Output: Eval(𝐴, 𝐺) ← min
(
𝑆𝐺,

log𝐸𝐺CFR−log𝐸
𝐺
𝐴

log𝐸𝐺CFR−log𝐸
𝐺
DCFR

)

we no longer evaluate 𝐴 and use 𝐴′ saved score as 𝐴’s. Since programs with the same code may have different structures, we still 
add 𝐴 to the population to potentially mutate into functionally different programs in the future.

Early hurdles. AutoCFR’s ultimate goal is to find programs that perform well on many different imperfect-information games, 
both simple and complex. If the program performs poorly in small simple games, there is no need to evaluate it in large complex 
games. We use Kuhn poker as an early hurdle game 𝐺ℎ and maintain the 75𝑡ℎ percentile 𝜂 of the scores of all algorithms in the 
population on 𝐺ℎ. If Eval(𝐴, 𝐺ℎ) < 𝜂, we early-stop evaluation 𝐴 on other games and discard it immediately.

Learning from bootstrapping. AutoCFR can learn from scratch by initializing the population with random algorithms or bootstrap 
the population with known algorithms. Learning from scratch is less biased toward human-designed algorithms and is more likely to 
discover completely different algorithms. However, it may take a long time to converge to practical algorithms. Bootstrapping from 
existing algorithms can make the search start from a good starting point and reduce the time required for convergence. We initialize 
the population with CFR and its typical variants, including CFR+, Linear CFR, and DCFR.

Parallelism. In our actual implementation, the outer and inner loop are executed in parallel. We use a distributed generator to 
implement the outer loop, which inputs the parent programs and outputs the mutated programs. Similarly, we implement the inner 
loop as a distributed evaluator, which inputs programs and training games and outputs the scores. These tasks are distributed among 
multiple processes on multiple machines, communicating through queues.

4. Results and analysis

4.1. Training and testing games

The choice of training games 𝔾 (e.g., game sizes, payoff ranges, etc.) dramatically affects the learned algorithm and its performance. 
The more diverse 𝔾 is, the better the generalization performance of the resulting algorithm. Besides, the games in 𝔾 should not be 
7

too large to solve as AutoCFR will evaluate thousands of candidate algorithms during training.
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We use some commonly used extensive-form games in the imperfect-information game research community. Poker has a long 
history as a benchmark for developing algorithms that deal with imperfect-information. The poker game involves all players being 
dealt with some private cards visible only to themselves, with players taking structured turns to make actions. Players usually have 
the following options: 1) fold, giving up the current game, the other player gets all the pot, 2) call, increasing his/her bet until both 
players have the same chips, 3) bet, putting more chips to the pot, 4) raise, putting more chips into the pot than is required to call the 
current bet. and 5) check, declining to wager any chips when not facing a bet. Kuhn Poker is a simplified form of poker proposed by 
Harold W. Kuhn [12]. There is a deck of three cards often denoted by J, Q, K. At the beginning of the game, each player gets a private 
card from the shuffled deck and bets one chip into the pot. Throughout the game, players have four options: folding, calling, betting, 
or checking. In Kuhn Poker, each player has a chance to bet one chip. If neither player folds, both players reveal their cards, and the 
player with the higher card takes all chips in the pot. The utility for each player is defined as the number of chips after playing minus 
the number of chips before playing.

Leduc Poker is a larger poker game first introduced in [25]. The game uses six cards that include two suites, each with three ranks 
(Js, Qs, Ks, Jh, Qh, Kh). Like Kuhn Poker, each player initially bets one chip, receives a single private card, and has the same action 
options. In Leduc Poker, there are two betting rounds. Each player has a chance to bet two chips in the first round and a chance to bet 
four chips in the second round. After the first round, one public card is revealed. If a player’s private card is paired with the public 
card, that player wins the game; otherwise, the player with the highest private card wins the game.

Liar’s Dice(x) is a dice game where each player gets an 𝑥-sided dice and a cup used for concealment. At the beginning of the 
game, each player rolls the dice under their cup and looks at their hand, keeping it concealed from the other player. The first player 
begins bidding of the form 𝑝-𝑞, announcing that there are at least 𝑝 dices with the number of 𝑞 under all of the cups. The highest dice 
number 𝑥 can be treated as any number. Then players take turns to take action: 1) bidding of the form 𝑝-𝑞, 𝑝 or 𝑞 must be greater 
than the previous player’s bidding, 2) calling ‘Liar’, ending the game immediately and revealing all the dices. If the last bid is not 
satisfied, the player calling ‘Liar’ wins the game. The winner’s utility is 1 and the loser -1.

II-Goofspiel(x) is a bidding card game. At the beginning of the game, each player receives 𝑥 cards numbered 1 … 𝑥, and there is a 
shuffled point card deck containing cards numbered 1 … 𝑥. The game proceeds in 𝑥 rounds. In each round, players select a card from 
their hand to make a sealed bid for the top revealed point card. When both players have chosen their cards, they show their cards 
simultaneously. The player who makes the highest bid wins the point card. If the bids are equal, the point card will be discarded. 
After 𝑥 rounds, the player with the most point cards wins the game. The winner’s utility is 1 and the loser -1. We use a fixed deck of 
decreasing points and an imperfect information variant where players are only told whether they have won or lost the bid, but not 
what the other player played.

HUNL Subgames introduced in [7] are heads-up no-limit Texas hold’em (HUNL) subgames generated by and solved in real-time 
by the state-of-the-art poker agent Libratus [26]. In HUNL, the two players (P1 and P2) start each hand with 20,000, and both players 
are dealt two private cards from a standard 52-card deck. P1 places 100 in the pot and P2 places 50 in the pot. P2 starts the first 
round of betting. The players alternate in choosing to fold, call, check or raise. A round ends when a player calls if both players have 
acted. After the first round, three community cards are dealt face up for all players to observe, and P1 now starts a similar round of 
betting. In the third and fourth rounds, one additional community card is dealt and betting starts again with P1. Unless a player has 
folded, the player with the best five-card poker hand, constructed from their two private cards and the five community cards, wins 
the pot. In the case of a tie, the pot is split evenly. The authors of [7] have released a total of four subgames which begin on different 
betting rounds, named Subgame 1, Subgame 2, Subgame 3, and Subgame 4, respectively. We have chosen two games, Subgame 3 
and Subgame 4, for testing. Specifically, HUNL Subgame 3 begins at the start of the final betting round with $500 in the pot. HUNL 
Subgame 4 begins at the start of the final betting round with $3,750 in the pot. In the first betting round, we use bet sizes of 0.5x, 1x 
the size of the pot, and an all-in bet. In other betting rounds, we use 1x the pot and all-in.

In addition, we manually design some two-player zero-sum normal-form games (NFG-{1-4}) with different characteristics and 
payoff ranges for training. Specifically, NFG-1 is a simple two-action game where players decide between two actions. Player 1’s 
payoff is 2 if takes the first action, and is 20,000 or 1 if takes the second action, depending on the action of player 2. NFG-2 is a 
game where player 1 can choose five actions, i.e., rock, paper, scissors, A1, and A2, while player 2 can only choose rock, paper, and 
scissors. When both players choose rock, paper, scissors, the game is a modified rock-paper-scissors game where the winner receives 
two points when either player chooses scissors; otherwise, the winner receives one point. But when player 1 chooses the last two 
actions, i.e., A1/A2, player 1 will lose 10,000/20,000. NFG-2 is an abstraction of some situations in real-world games that include 
highly sub-optimal actions, e.g., all-in irrationally leads to huge losses in poker. NFG-3 is a game with small utility values where 
player 1 has three actions, and player 2 has two actions. If player 2 chooses the first action, player 1 will receive 0.001, 0.002, −0.1
for the three actions, respectively. If player 2 chooses the second action, player 1 will receive −0.001, −0.003, −0.002 for the three 
actions, respectively. NFG-4 is a game with many actions where player 1 decides between 21 actions and player 2 only has one 
choice. The utilities of 21 actions range from -1,000 to 1,000, with an interval of 100. Although these norm-form games seem trivial, 
some of them are very challenging to solve efficiently, e.g., the vanilla CFR requires 15,000 iterations to solve NFG-1. The payoff 
matrices of the four normal-form games are shown in Table 3.

In particular, the training games 𝔾 include four normal-form games (NFG-{1-4}) and four small extensive-form games, i.e., Kuhn 
Poker, II-Goofspiel(3), Liar’s Dice(3), and Liar’s Dice(4). These training games are computationally inexpensive to solve but cover a 
diverse set of problems. The testing games include four relatively large extensive-form games, i.e., II-Goofspiel(4), Leduc Poker, HUNL 
Subgame 3, and HUNL Subgame 4. These testing games are diverse in size and nontrivial to solve, which are very suitable for testing 
8

the generalization performance of the learned algorithm.
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Table 3

Payoff matrices of four normal-form games (NFG-{1-4}). The values in the matrix represent Player 1’s payoffs, 
while Player 2’s payoffs are the negative of Player 1’s payoffs.

(a) NFG-1

B1 B2
A1 2 2
A2 20000 1

(b) NFG-3

B1 B2
A1 0.001 -0.001
A2 0.002 -0.003
A3 -0.1 -0.002

(c) NFG-2

Rock Paper Scissors

Rock 0 -1 2
Paper 1 0 -2

Scissors -2 2 0
A1 -10000 -10000 -10000
A2 -20000 -20000 -20000

(d) NFG-4

B1

A1 -1000

A2 -900

A3 -800
... ...

A19 800

A20 900

A21 1000

Table 4

Sizes of the games.

Game #Histories #Infosets #Terminal histories Depth Max size of infosets

NFG-1 7 2 3 3 3

NFG-2 21 2 15 3 5

NFG-3 10 2 6 3 3

NFG-4 43 2 21 3 21

Kuhn Poker 58 12 30 6 2

II-Goofspiel (3) 67 16 36 5 4

Liar’s Dice (3) 1,147 192 567 10 3

Liar’s Dice (4) 8,181 1,024 4,080 12 4

II-Goofspiel (4) 1,077 162 576 7 14

Leduc Poker 9,457 936 5,520 12 5

HUNL Subgame 3 398,112,843 69,184 261,126,360 10 1,980

HUNL Subgame 4 244,005,483 43,240 158,388,120 8 1,980

We measure the sizes of the games in many dimensions and report the results in Table 4. In the table, #Histories measures the 
number of histories in the game tree. #Infosets measures the number of information sets in the game tree. #Terminal histories measures 
the number of terminal histories in the game tree. Depth measures the depth of the game tree, i.e., the maximum number of actions 
in one history. Max size of infosets measures the maximum number of histories that belong to the same information set.

4.2. Training details

We search over a program space containing a maximum of 30 operation nodes. The population size 𝑃 is 300, and the tournament 
size 𝑇 is 25, the same as those used in [15]. The parent program mutates with 0.95 probability and remains the same otherwise. 
We do not employ the crossover operation based on the observation that it could generate numerous invalid algorithms, thereby 
reducing search efficiency. We train AutoCFR on a distributed server with 250 CPU cores and run for about 8 hours, at which point 
around 10,000 algorithms have been evaluated. For the inner loop evaluation procedure Eval(𝐴, 𝐺), we set iteration 𝑀 to 1,000 in 
all games, except for in Liar’s Dice(4), where 𝑀 is 100 since it is a relatively large game.

4.3. Learned CFR variant: DCFR+

We focus on one particularly interesting new CFR variant, i.e., DCFR+, that was learned by our AutoCFR framework, and that has 
good generalization performance on different imperfect-information games:

𝑅𝑇𝑖 (𝐼, 𝑎) = max
(
0,𝑅𝑇−1𝑖 (𝐼, 𝑎) ∗ (𝑇 − 1)1.5

(𝑇 − 1)1.5 + 1.5
+ 𝑟𝑇𝑖 (𝐼, 𝑎)

)
,

𝐶𝑇𝑖 (𝐼, 𝑎) = 𝐶
𝑇−1
𝑖 (𝐼, 𝑎) ∗ 𝑇 − 1

𝑇
+ 𝜋𝜎𝑇𝑖 ∗ 𝑇 3 ∗ 𝜎𝑇𝑖 (𝐼, 𝑎),

𝜎𝑇+1
𝑖

(𝐼, 𝑎) =
𝑅𝑇 ,+
𝑖

(𝐼, 𝑎)∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′)
.

(3)

DCFR+’s improvement over existing CFR variants shown in Figs. 3 and 4 is due to two core enhancements: the maximum function 
and a new discounting method. Here, we provide some intuitive explanations of why they improve the performance: 1) The most 
prominent feature of DCFR+ is the use of max(0, ⋅) to rectify the cumulative regrets, which is similar to regret-matching+ in CFR+. 
When the best action suddenly changes, CFR may take a long time to overcome the accumulated negative regret. In contrast, DCFR+ 
will play the best action immediately since its accumulated negative regret is forgotten thanks to the max(0, ⋅) operator. 2) Similar to 
DCFR in Table 1, DCFR+ also discounts the previous iterations and gives higher weights to the later iterations when accumulating 
9

strategies and regrets, albeit in a very different way. This discounting mechanism is beneficial when encountering highly suboptimal 
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Fig. 3. Comparison of DCFR+ against four CFR variants on eight training games. Another four training games are in Fig. 1.

Fig. 4. Comparison of DCFR+ against four CFR variants on four testing games.

Fig. 5. Comparison of DCFR+ against four CFR variants for a large number of iterations (100,000).

actions, i.e., actions that cause huge mistakes. It is worth noting that DCFR’s authors have tried to combine CFR+ with DCFR, but 
they found that the combined algorithm resulted in poor performance. Our AutoCFR framework can automatically discover DCFR+ 
through evolutionary search without manual algorithm design, which finds a new way to combine the key insights of CFR+ and 
DCFR effectively.

Consider the simple two-action game NFG-1. The Nash equilibrium of this game is to choose the first action with 100% probability. 
The CFR variants use the uniform random strategy in the first iteration and result in cumulative regrets of 𝑅1 = −4, 999, 𝑅2 = 4, 999. 
CFR will take a long time to obtain the optimal strategy, where 𝑅1 > 0 and 𝑅2 < 0. In contrast, DCFR+ directly sets 𝑅1 to zero in 
the first iteration and discounts 𝑅2 in the later iterations. As a result, it will take CFR 15,000 iterations, CFR+ 10,001 iterations, 
DCFR 1,217 iterations, and DCFR+ only 540 iterations to approach the Nash equilibrium. It demonstrates that DCFR+ can quickly 
eliminate the negative effects of suboptimal actions.

We conduct additional experiments on larger games to further assess the scalability of DCFR+. Specifically, we test DCFR+ on 
II-Goofspiel (5), II-Goofspiel (6), Liar’s Dice (5), and Liar’s Dice (6). Additionally, we increase the number of iterations to 100,000 to 
observe long-term behavior. The results are presented in Fig. 5. The exploitability of DCFR+ decreases faster than or at least as fast as 
other CFR variants, indicating that DCFR+ converges to the Nash equilibrium more efficiently. Our findings consistently demonstrate 
that DCFR+ outperforms other CFR variants in large games, affirming the scalability of DCFR+ in such contexts.

4.4. Convergence analysis of DCFR+

Besides the superior empirical performance of DCFR+, here we demonstrate that it converges to approximate Nash equilibrium 
after enough iterations in two-player zero-sum imperfect-information games theoretically.

Theorem 1. Assume that 𝑇 iterations of DCFR+ are conducted in a two-player zero-sum game. Then the weighted average strategy profile 
is a 5||Δ((√|𝐴|+ 1.5)

√
𝑇 + 1.5

√|𝐴|(ln𝑇 + 1))∕𝑇 -Nash equilibrium.

Prior work [27] has shown that, in two-player zero-sum games, if both players’ weighted average regret is 𝜖, then their weighted 
average strategies are a 2𝜖-Nash equilibrium. Therefore, the key idea to prove Theorem 1 is to show that each player’s weighted 
average regret is upper bounded by 𝜖, which approaches to zero as 𝑇 goes to infinity. We provide the detailed proof in appendix A, 
10

which incorporates and extends the proof for the vanilla CFR [5], CFR+ [10] and DCFR [7].
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Fig. 6. The computational graph of PCFR+ using our domain-specific language.

Fig. 7. Comparison of NewPCFR+ against PCFR+.

Theorem 1 shows that DCFR+ achieves similar asymptotic guarantees as CFR, albeit with somewhat larger convergence bound. 
However the extensive empirical results in Figs. 3, 4 and 5 demonstrate that in practice our DCFR+ dramatically outperforms CFR. 
These observations are similar to the behaviors of CFR+, whose convergence bound is higher than CFR but typically converges much 
faster than CFR. These results also validate our motivation that the gaps between theoretical properties and practical performance 
increase the difficulty of manually designing effective CFR variants only from the theoretical point of view, since the actual conver-
gence rates of CFR-type algorithms are usually different from their theoretical properties. In contrast, our AutoCFR framework can 
search for novel CFR variants with strong generalization ability and practical performance from the rich space of equilibrium-finding 
algorithms directly.

4.5. The extensibility of AutoCFR in designing novel CFR algorithms

AutoCFR can automatically discover new CFR algorithms through meta-learning in the computational graph space, which are 
represented by a carefully designed domain-specific language. This language is highly extensible; it can not only represent classic 
CFR variants (e.g., CFR+) but also can be extended to incorporate the latest developments in CFR (e.g., predictive CFR+ [28]) to find 
variants better than the current state-of-the-art algorithms.

Specifically, Predictive CFR+ (PCFR+) is a recently proposed state-of-the-art CFR variant which extends Blackwell approachabil-
ity [29] to regret minimization to form Predictive Regret Matching+ (PRM+). As shown in Fig. 6, our domain-specific language can be 
easily extended by incorporating PRM+ to represent PCFR+. To demonstrate the extensibility of AutoCFR, we have integrated these 
latest developments into the search space and automatically discovered a new CFR variant as follows, which we named NewPCFR+.

𝑅𝑇𝑖 (𝐼, 𝑎) =
{
𝑅𝑡−1
𝑖

(𝐼, 𝑎) + 4 ∗ 𝑟𝑡
𝑖
(𝐼, 𝑎), if𝑅𝑡−1

𝑖
(𝐼, 𝑎) > 0

𝑟𝑇
𝑖
(𝐼, 𝑎) otherwise,

𝐶𝑇𝑖 (𝐼, 𝑎) =
(
𝐶𝑇−1𝑖 (𝐼, 𝑎) ∗

(
𝑇 − 1
𝑇

)2
+ 𝜋𝜎𝑇𝑖 ∗ 𝜎𝑇𝑖 (𝐼, 𝑎)

)
∗ 𝑇 − 1
𝑇

𝜎𝑇+1
𝑖

(𝐼, 𝑎) =
max

(
𝑅𝑇
𝑖
(𝐼, 𝑎) + 𝑟𝑇

𝑖
(𝐼, 𝑎),0

)2∑
𝑎′∈(𝐼) max

(
𝑅𝑇
𝑖
(𝐼, 𝑎) + 𝑟𝑇

𝑖
(𝐼, 𝑎),0

)2
(4)

As depicted in Fig. 7, NewPCFR+ outperforms PCFR+ in most games. A noteworthy aspect of NewPCFR+ is its utilization of 
a square function in computing the new strategy, a feature we believe has not been previously explored in the CFR literature. 
These results demonstrate that our AutoCFR framework can stand on the shoulders of researchers, leveraging their latest insights and 
discoveries to automatically discover more effective algorithms. We believe this is also why AutoCFR is important for the advancement 
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of game-solving algorithms.
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Table 5

Performance comparison of the best algorithms learned by three AutoCFR variants.

Kuhn Poker II-Goofspiel(4) Leduc Poker HUNL Subgame 3 HUNL Subgame 4

AutoCFR 114.89 ∗ 10−6 𝟏.𝟎𝟒 ∗ 𝟏𝟎−𝟔 𝟏.𝟒𝟔 ∗ 𝟏𝟎−𝟔 𝟐𝟐.𝟎𝟐 ∗ 𝟏𝟎−𝟔 𝟗.𝟖𝟎 ∗ 𝟏𝟎−𝟔
AutoCFR-4 𝟓𝟕.𝟖𝟎 ∗ 𝟏𝟎−𝟔 2.74 ∗ 10−6 2.88 ∗ 10−6 43.29 ∗ 10−6 43.93 ∗ 10−6

AutoCFR-S 144.92 ∗ 10−6 332.71 ∗ 10−6 11363.57 ∗ 10−6 4806.02 ∗ 10−6 7590.12 ∗ 10−6

Fig. 8. Performance curves for learning from scratch and bootstrapping as the number of evaluated algorithms increases. The performance represents the maximum 
score within the population, which aligns with the training objective function 𝐴∗ in Equation (1).

4.6. Ablation studies of AutoCFR

4.6.1. Varying the number of training games

The choice of training games dramatically affects the performance of the algorithm learned by our AutoCFR framework. Here, 
we specifically consider how the number of training games affects the learned algorithm, and the results are shown in Table 5. 
AutoCFR-4, i.e., the learned algorithm using four games (i.e., Kuhn Poker, II-Goofspiel(3), Liar’s Dice(3), and Liar’s Dice(4)), performs 
best in the training game Kuhn Poker. However, it underperforms AutoCFR, i.e., the learned algorithm DCFR+ using eight games (i.e., 
Kuhn Poker, II-Goofspiel(3), Liar’s Dice(3), Liar’s Dice(4) and NFG-{1-4}), in the testing games. These results clearly demonstrate that 
training with four games suffers from some overfitting, and the additional four normal-form games increase the learned algorithm’s 
generalization performance.

4.6.2. Learning from scratch versus bootstrapping

As discussed previously, a crucial step to accelerate AutoCFR’s training process is learning from bootstrapping. We compare 
learning from bootstrapping (AutoCFR) with learning from scratch (AutoCFR-S) using the same eight training games (i.e., Kuhn 
Poker, II-Goofspiel(3), Liar’s Dice(3), Liar’s Dice(4) and NFG-{1-4}). As shown in Table 5, bootstrapping from existing CFR variants 
significantly improves the learning performance of AutoCFR over AutoCFR-S without bootstrapping. In Fig. 8, we further demonstrate 
the effectiveness of our search algorithm. AutoCFR substantially enhances the performance (from 1.00 to 1.15) over the state-of-the-
art DCFR algorithm. Meanwhile, AutoCFR-S efficiently finds an algorithm that surpasses CFR by a large margin (from 0.0 to 0.9) even 
by learning from scratch. Although there is still room for improvement in learning from scratch, we believe this is primarily due to 
AutoCFR-S exploring only a tiny proportion of the vast search space, constrained by the limited budget available for training.

AutoCFR is biased toward existing CFR algorithms through learning with bootstrapping. In contrast, learning from scratch is less 
biased toward human-designed algorithms and is more likely to uncover completely different algorithms. Indeed, AutoCFR-S finds 
many “unconventional” CFR algorithms by learning from scratch. One top-performing example is as follows:

𝑅𝑇𝑖 (𝐼, 𝑎) =min
(
1, (𝜎𝑇𝑖 + 1.5) ∗ 𝜎𝑇𝑖 (𝐼, 𝑎) ∗ 0.01

+max

(
𝑇 ∗ 𝑟𝑇𝑖 (𝐼, 𝑎),

(
𝜎𝑇
𝑖
(𝐼, 𝑎) + 1.5

)
∗ 𝜎𝑇
𝑖
(𝐼, 𝑎) ∗ 0.01

𝑇

)

∗
max

(
𝐶𝑇
𝑖
(𝐼, 𝑎),1

)∑
𝑎′∈(𝐼) max

(
𝐶𝑇
𝑖
(𝐼, 𝑎′),1

))

𝐶𝑇𝑖 (𝐼, 𝑎) =max

(
min

(
𝑇 ,min

(
𝐶𝑇−1𝑖 (𝐼, 𝑎),

𝑅𝑇−1
𝑖

(𝐼, 𝑎)
1.5

)
+max

(
𝐶𝑇−1𝑖 (𝐼, 𝑎) + 𝑟𝑇𝑖 (𝐼, 𝑎),0

))
,−0.01

)
𝜎𝑇+1
𝑖

(𝐼, 𝑎) =
𝑅𝑇
𝑖
(𝐼, 𝑎) +𝐶𝑇

𝑖
(𝐼, 𝑎)∑

𝑎′∈(𝐼)
(
𝑅𝑇
𝑖
(𝐼, 𝑎′) +𝐶𝑇

𝑖
(𝐼, 𝑎′)

)

(5)

This algorithm is radically different from the existing CFR algorithms. For example, it uses the cumulative strategy to calculate the 
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cumulative regret, the instantaneous regret to calculate the cumulative strategy, and the cumulative strategy to calculate the new 
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strategy. Although this algorithm is somewhat peculiar, we have found that its performance can surpass CFR+ and approach DCFR 
in same games. However, it exhibits a more complex form and poor interpretability, which needs further investigation. We plan to 
release the computation graphs for the top algorithms for both learning from scratch and learning from bootstrapping to enable further 
theoretical and empirical analysis of the discovered algorithms. We believe that this computational graph dataset is of independent 
interest to the community and will inspire the design of more effective equilibrium-finding algorithms.

5. Related work

5.1. Counterfactual regret minimization

CFR [5] is the workhorse for solving two-player zero-sum imperfect-information games. Since its birth, many different variants 
have been proposed, which can be broadly classified into three categories. The first category tries to make CFR more efficient, and the 
typical representatives are CFR+ [6] and DCFR [7]. Besides, Monte Carlo counterfactual regret minimization (MCCFR) [30,31] is a 
family of sample-based algorithms which reduces the cost per iteration of vanilla CFR. Some pruning [32,33] and warm starting [34]
algorithms are also used to improve the efficiency of CFR. The second category is to extend CFR for imperfect-information subgame 
solving [35,36] and has made a series of breakthroughs in the poker AI community. For example, DeepStack [37], which exploits 
a continual re-solving algorithm, defeated ten professional poker players. Libratus [26] defeated four top poker professionals by 
using a nested safe subgame solving algorithm [36]. Student of Games [38] is a general-purpose algorithm that combines guided 
search, self-play learning, and game-theoretic reasoning, achieves strong empirical performance in both large perfect and imperfect 
information games. The third category tries to combine CFR with neural networks to improve CFR’s generalization ability, and the 
typical examples are DeepCFR [11], Single DeepCFR [39], and Double Neural CFR [40]. Our AutoCFR belongs to the first category 
and is complementary to other CFR variants. For example, DeepCFR can use the algorithm learned by our AutoCFR framework to 
further improve its performance.

5.2. Automated machine learning

To make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine 
learning (AutoML) [41,42], including meta-learning, which aims to automate the machine learning process has recently become a hot 
topic in both academia and industry. One notable example is neural architecture search [43,44,13] which automates network archi-
tecture engineering and aims to learn a network topology that outperform hand-designed architectures. Besides, there are some other 
AutoML methods which try to automatically design the learning rules used during backpropagation [45,46], the data augmentation 
policies in supervised learning [47] or the intrinsic curiosity reward in reinforcement learning [19]. More recently, AutoML-Zero [14]
automatically finds machine learning algorithms from scratch using basic mathematical operations. AutoCFR shares similar ideas but 
is applied to search equilibrium-finding algorithms in imperfect-information games for the first time. To our best knowledge, the 
most similar work to our AutoCFR is the “Learning not to Regret” framework proposed in [48], which enhances the efficiency of 
regret minimization algorithms through meta-learning a regret prediction network. However, AutoCFR and the methods presented 
in [48] exhibit clear differences. AutoCFR can be considered a meta-learning algorithm operating in the computational graph space. 
In contrast, [48] presents a meta-learning algorithm in the neural network space. AutoCFR and [48] provide two distinct perspectives 
on using meta-learning for game-solving, with AutoCFR’s advantage lying in stronger interpretability due to its use of computational 
graphs. The algorithm in [48], utilizing gradient descent, may have advantages in terms of training efficiency. Exploring how to 
synergize the strengths of both approaches to obtain more effective game-solving algorithms is an intriguing avenue for future work.

5.3. Evolutionary algorithm

Evolutionary algorithm [49] is a generic population-based metaheuristic optimization algorithm. It uses mechanisms inspired by 
biological evolution, such as mutation and selection, where candidate solutions play the role of individuals in the population and the 
fitness function determines the quality of the solutions. Evolutionary algorithm can effectively address complex optimization problems 
that traditional optimization algorithms struggle to solve. Recent progress using evolutionary algorithms has achieved impressive 
results in playing games [50], optimizing neural networks [51,52], and finding novel reinforcement learning algorithms [22,15]. In 
contrast, we use evolutionary algorithm with lots of acceleration techniques to search for novel CFR variants for solving imperfect-
information games. Recently, many differentiable search algorithms [53] have been proposed and have been shown to be faster by 
several orders of magnitude than evolutionary algorithms. We believe this to be a highly intriguing area for future work to enhance 
the efficiency of AutoCFR.

6. Conclusion and future work

This paper introduces AutoCFR, a systematic framework for the automatic design of novel CFR algorithms. By introducing a 
specially designed domain-specific language to represent CFR-type algorithms and utilizing a regularized evolution algorithm for 
efficient search within the combinatorial space defined by this language, we have successfully discovered new CFR variants that 
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outperform existing state-of-the-art CFR variants. AutoCFR exhibits excellent scalability and generalizability, capable of handling 
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unseen games of different scales and types. It also demonstrates flexibility, allowing for leveraging the latest insights and discoveries 
to automatically uncover more effective algorithms.

Our main contributions and insights are as follows: 1) Our work demonstrates that efficient game-solving algorithms can be 
automatically discovered through meta-learning, without manual trial and error. This opens up a new paradigm for future algorithm 
design. 2) Our domain-specific language is sufficiently rich to represent existing and potential CFR variants. The expressiveness of this 
language is pivotal for the successful discovery of new algorithms. 3) The regularized evolution algorithm we adopted, combined with 
a series of acceleration techniques, can effectively navigate the vast algorithmic space. This highlights the potential of evolutionary 
algorithms in addressing complex combinatorial optimization problems.

In conclusion, AutoCFR offers a new paradigm for solving imperfect-information games, showcasing the immense potential of auto-
matic algorithm design in enhancing computational efficiency and discovering innovative solutions. We anticipate that this approach 
will stimulate more research on the automation of algorithm design, ultimately contributing to the development of more efficient and 
universally applicable artificial intelligence systems. Looking ahead, there are numerous avenues for future research and develop-
ment. Expanding the search space to encompass Monte Carlo CFR types and incorporating a broader range of imperfect-information 
games could further enhance AutoCFR. Another promising direction is to restrict the search space of AutoCFR to algorithms with 
regret minimization guarantees. This approach could not only strengthen the theoretical guarantees of the obtained algorithms but 
also reduce the size of the search space. Additionally, investigating the integration of neural networks and other machine learning 
techniques with the evolved CFR algorithms could lead to even more scalable and efficient game-solving algorithms.
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Appendix A. Proof of Theorem 1

We first introduce some notations and equations to facilitate the proof, where the information set 𝐼 is omitted for clarity.

• 𝑣𝑡 =
𝑡1.5

𝑡1.5+1.5 , 𝑤𝑡 =Π𝑇−1
𝑖=𝑡 𝑣𝑖 for 𝑡 < 𝑇 , and 𝑤𝑇 = 1.

• 𝑢𝑡 = 𝑡3Π𝑇−1𝑖=𝑡
𝑖

𝑖+1 = 𝑡
4

𝑇
for 𝑡 < 𝑇 , and 𝑢𝑇 = 𝑇 3.

• 𝑄𝑇 (𝑎) =max
(
0,𝑄𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎)

)
.

• 𝑃𝑇 (𝑎) = 𝑃𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎) =
∑𝑇
𝑡=1𝑤𝑡𝑟

𝑡(𝑎).
• Δ𝑄𝑡(𝑎) =𝑄𝑡(𝑎) −𝑄𝑡−1(𝑎) ≥𝑄𝑡−1(𝑎)𝑣𝑡−1 + 𝑟𝑡(𝑎) −𝑄𝑡−1(𝑎) = 𝑟𝑡(𝑎) − (1 − 𝑣𝑡−1)𝑄𝑡−1(𝑎).
• Δ𝑃 𝑡(𝑎) = 𝑃 𝑡(𝑎) − 𝑃 𝑡−1(𝑎) =𝑤𝑡𝑟𝑡(𝑎) = 𝑟𝑡(𝑎) − (1 − 𝑣𝑡−1)𝑃 𝑡−1(𝑎).

Base on these notations, DCFR+ can be reformulated as:

𝑄𝑇 (𝑎) = max
(
0,𝑄𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎)

)
.

𝐶𝑇 (𝑎) = 𝐶𝑇−1(𝑎)𝑇 − 1
𝑇

+ 𝜋𝜎𝑇𝑖 𝑇
3𝜎𝑇 (𝑎) =

𝑇∑
𝑡=1
𝑢𝑡𝜋
𝜎𝑡

𝑖 𝜎
𝑡(𝑎).

𝜎𝑇+1(𝑎) =𝑄𝑇 ,+
𝑖

(𝑎)∕
∑
𝑎′∈(𝐼)

𝑄𝑇 ,+
𝑖

(𝑎′).

(A.1)

Lemma 1. Given a sequence of strategies 𝜎1, ..., 𝜎𝑇 , each defining a probability distribution over a set of actions , 𝑄𝑡(𝑎) =max(0, 𝑄𝑡−1(𝑎) ∗
𝑣𝑡−1 + 𝑟𝑡(𝑎)), 𝑃 𝑡(𝑎) = 𝑃 𝑡−1(𝑎) ∗ 𝑣𝑡−1 + 𝑟𝑡(𝑎) and 𝑄0(𝑎) = 𝑃 0(𝑎) = 0 for all actions 𝑎 ∈. 𝑄𝑡(𝑎) is then an upper bound of 𝑃 𝑡(𝑎) for all 
14

0 ≤ 𝑡 ≤ 𝑇 .
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Proof. We prove this inductively. When 𝑡 = 0, 𝑃 0(𝑎) =𝑄0(𝑎) = 0, so 𝑃 𝑡(𝑎) ≤𝑄𝑡(𝑎) is true for 𝑡 = 0. Suppose 𝑃 𝑡(𝑎) ≤𝑄𝑡(𝑎) is true for 
𝑡 = 𝑘. Then 𝑄𝑘+1(𝑎) =max(0, 𝑄𝑘(𝑎) ∗ 𝑣𝑘 + 𝑟𝑘+1(𝑎)) ≥𝑄𝑘(𝑎) ∗ 𝑣𝑘 + 𝑟𝑘+1(𝑎) ≥ 𝑃𝑘(𝑎) ∗ 𝑣𝑘 + 𝑟𝑘+1(𝑎) = 𝑃𝑘+1(𝑎). Thus, 𝑃 𝑡(𝑎) ≤𝑄𝑡(𝑎) holds 
for 𝑡 = 𝑘 + 1. By the principle of induction, 𝑃 𝑡(𝑎) ≤𝑄𝑡(𝑎) is true for all 0 ≤ 𝑡 ≤ 𝑇 . □

Lemma 2. 
∑
𝑎∈𝑄𝑇 (𝑎)𝑟𝑇+1(𝑎) = 0.

Proof. The player selects actions 𝑎 ∈  on iteration 𝑇 + 1 according to regret-matching, i.e., 𝜎𝑇+1(𝑎) = 𝑄𝑇+(𝑎)∑
𝑏∈𝑄𝑇+(𝑏)

= 𝑄𝑇 (𝑎)∑
𝑏∈𝑄𝑇 (𝑏) . 

The expected value 𝑣𝑇+1 on iteration 𝑇 + 1 is 𝑣𝑇+1 =
∑
𝑎∈ 𝜎𝑇+1(𝑎)𝑣𝑇+1(𝑎) =

∑
𝑎∈𝑄𝑇 (𝑎)𝑣𝑇+1(𝑎)∑

𝑏∈𝑄𝑇 (𝑏)
. Then 

∑
𝑎∈𝑄𝑇 (𝑎)𝑣𝑇+1 =∑

𝑎∈𝑄𝑇 (𝑎)∗
∑
𝑎∈𝑄𝑇 (𝑎)𝑣𝑇+1(𝑎)∑

𝑏∈𝑄𝑇 (𝑏) =
∑
𝑎∈𝑄𝑇 (𝑎)𝑣𝑇+1(𝑎). So 

∑
𝑎∈𝑄𝑇 (𝑎)𝑟𝑇+1(𝑎) =

∑
𝑎∈𝑄𝑇 (𝑎)(𝑣𝑇+1(𝑎) − 𝑣𝑇+1) = 0 □

Lemma 3. Given a set of actions , and any sequence of 𝑇 value functions 𝑣𝑡 ∶ →ℝ with a bound Δ such that |𝑣𝑡(𝑎) − 𝑣𝑡(𝑏)| ≤Δ for all 
𝑡 and 𝑎, 𝑏 ∈, then 𝑄𝑇 (𝑎) ≤Δ

√|𝐴|𝑇 for all 𝑎 ∈.

Proof.

(max
𝑎
𝑄𝑇 (𝑎))2 = max

𝑎
𝑄𝑇 (𝑎)2 ≤∑

𝑎

𝑄𝑇 (𝑎)2

=
∑
𝑎

(
max

(
0,𝑄𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎)

))2
≤∑
𝑎

(
𝑄𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎)

)2
=
∑
𝑎

𝑄𝑇−1(𝑎)2𝑣2
𝑇−1 +

∑
𝑎

2𝑄𝑇−1(𝑎)𝑟𝑇 (𝑎)𝑣𝑇−1 +
∑
𝑎

𝑟𝑇 (𝑎)2

=
∑
𝑎

𝑄𝑇−1(𝑎)2𝑣2
𝑇−1 +

∑
𝑎

𝑟𝑇 (𝑎)2 (Lemma 2)

≤ 𝑣2
𝑇−1

∑
𝑎

𝑄𝑇−1(𝑎)2 + |𝐴|Δ2

≤ 𝑣2
𝑇−1(𝑣

2
𝑇−2

∑
𝑎

𝑄𝑇−2(𝑎)2 + |𝐴|Δ2) + |𝐴|Δ2 ≤…

≤
𝑇−1∑
𝑡=1

{Π𝑇−1𝑖=𝑡 𝑣𝑖}
2|𝐴|Δ2 + |𝐴|Δ2 =

𝑇∑
𝑡=1
𝑤2
𝑡 |𝐴|Δ2 ≤ 𝑇 |𝐴|Δ2,

which gives us 𝑄𝑇 (𝑎) ≤Δ
√|𝐴|𝑇 . □

Lemma 4. Given a set of actions , and any sequence of 𝑇 value functions 𝑣𝑡 ∶ →ℝ with a bound Δ such that |𝑣𝑡(𝑎) − 𝑣𝑡(𝑏)| ≤Δ for all 
𝑡 and 𝑎, 𝑏 ∈, then −Δ𝑇 ∕2 ≤ 𝑃𝑇 (𝑎) ≤Δ

√|𝐴|𝑇 for all 𝑎 ∈.

Proof. From Lemma 3, we have 𝑄𝑇 (𝑎) ≤Δ
√|𝐴|𝑇 . By Lemma 1, we can conclude that 𝑃𝑇 (𝑎) ≤𝑄𝑇 (𝑎) ≤Δ

√|𝐴|𝑇 . 𝑤𝑡 =Π𝑇−1
𝑖=𝑡

𝑖1.5

𝑖1.5+1.5 ≥
Π𝑇−1
𝑖=𝑡

𝑖

𝑖+1 = 𝑡

𝑇
( 𝑖

1.5

𝑖1.5+1 ≥ 𝑖

𝑖+1 is not true when 𝑖 = 1, 2, but can be ignored when 𝑇 is large). 
∑𝑇
𝑡=1𝑤𝑡 ≥ 𝑇 (𝑇+1)2𝑇 >

𝑇

2 , 𝑃𝑇 (𝑎) =
∑𝑇
𝑡=1𝑤𝑡𝑟

𝑡(𝑎) ≥
− 𝑇2 Δ. So −Δ𝑇 ∕2 ≤ 𝑃𝑇 (𝑎) ≤Δ

√|𝐴|𝑇 for all 𝑎 ∈. □

Lemma 5. Call a sequence 𝑥1, ..., 𝑥𝑇 of bounded real values 𝐵𝐶 -plausible if 𝐵 > 0, 𝐶 ≤ 0, 
∑𝑖
𝑡=1 𝑥𝑡 ≥ 𝐶 for all 𝑖, and 

∑𝑇
𝑡=1 𝑥𝑡 ≤ 𝐵. For any 

𝐵𝐶 -plausible sequence and any sequence of non-decreasing weights 𝑤𝑡 ≥ 0, 
∑𝑇
𝑡=1(𝑤𝑡𝑥𝑡) ≤𝑤𝑇 (𝐵 −𝐶).

Proof. The proof is identical to that of Lemma 1 in [7]. □

Lemma 6. Let  be a set of actions, 𝑣𝑡 ∶ →ℝ be a sequence of 𝑇 value functions over  with a bound Δ such that |𝑣𝑡(𝑎) − 𝑣𝑡(𝑏)| ≤Δ for 
all 𝑡 and 𝑎, 𝑏 ∈, 𝜎𝑡 be the sequence of strategies generated by Equation (A.1). Construct a weighted sequence 𝜎′ 𝑡 in which 𝜎′ 𝑡 is identical 
to 𝜎𝑡, but weighted by 𝑢𝑡. Then the weighted regret 𝑅𝑇 (𝑎) of this new sequence is bounded by 𝑇 3(Δ(

√|𝐴|+1.5)
√
𝑇 +1.5Δ

√|𝐴|(ln𝑇 +1)), 
and the weighted average regret is bounded by 5(Δ(

√|𝐴|+ 1.5)∕
√
𝑇 + (1.5Δ

√|𝐴|(ln𝑇 + 1))∕𝑇 ).

Proof. We know that 𝑤𝑡+1 = Π𝑇−1
𝑖=𝑡+1𝑣𝑖 = 𝑤𝑡∕𝑣𝑡 = 𝑤𝑡 ∗

𝑡1.5+1.5
𝑡1.5

, and 𝑢𝑡+1 = (𝑡+1)4
𝑇

= 𝑢𝑡 ∗ ( 𝑡+1
𝑡
)4. Then 𝑢

𝑡+1

𝑤𝑡+1
= 𝑢𝑡
𝑤𝑡

∗ ( 𝑡+1
𝑡
)4 ∗ 𝑡1.5

𝑡1.5+1.5 . 

Since ( 𝑡+1
𝑡
)4 ∗ 𝑡1.5

𝑡1.5+1.5 ≥ ( 𝑡+1
𝑡
)4 ∗ 𝑡

𝑡+1.5 = ( 𝑡+1
𝑡
)2 ∗ (𝑡+1)2

𝑡(𝑡+1.5) ≥ 1, so 𝑢
𝑡+1

𝑤𝑡+1
>
𝑢𝑡

𝑤𝑡
, and 𝑢

𝑡

𝑤𝑡
is non-decreasing. The weighted regret 𝑅𝑇 (𝑎) =∑ ∑ ∑
15

𝑇
𝑡=1 𝑢𝑡𝑟

𝑡(𝑎) = 𝑇
𝑡=1

𝑢𝑡
𝑤𝑡
(𝑤𝑡𝑟𝑡(𝑎)) =

𝑇
𝑡=1

𝑢𝑡
𝑤𝑡
Δ𝑃 𝑡(𝑎).
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Δ𝑃 𝑡(𝑎) − Δ𝑄𝑡(𝑎) ≤ [𝑟𝑡(𝑎) − (1 − 𝑣𝑡−1)𝑃 𝑡−1(𝑎)]

− [𝑟𝑡(𝑎) − (1 − 𝑣𝑡−1)𝑄𝑡−1(𝑎)]

= (𝑄𝑡−1(𝑎) − 𝑃 𝑡−1(𝑎))(1 − 𝑣𝑡−1(𝑎))

= (𝑄𝑡−1(𝑎) − 𝑃 𝑡−1(𝑎)) 1.5
(𝑡− 1)1.5 + 1.5

≤
(
Δ
√|𝐴|(𝑡− 1) + (𝑡− 1)

2
Δ
)

1.5
(𝑡− 1)1.5 + 1.5

(Lemma 3, 4)

𝑇∑
𝑡=1

𝑡− 1
2

Δ 1.5
(𝑡− 1)1.5 + 1.5

= 1.5
2

Δ
𝑇∑
𝑡=1

𝑡− 1
(𝑡− 1)1.5 + 1.5

≤ 1.5
2

Δ
𝑇∑
𝑡=2

1
(𝑡− 1)0.5

≤ 1.5
2

Δ
⎛⎜⎜⎝1 +

𝑇

∫
𝑡=2

1√
𝑡− 1

⎞⎟⎟⎠𝑑𝑡
≤ 1.5

2
Δ
(
1 + 2

√
𝑡− 1|||𝑇𝑡=2

)
≤ 1.5Δ

√
𝑇

𝑇∑
𝑡=1

1.5Δ
√|𝐴|(𝑡− 1)

(𝑡− 1)1.5 + 1.5
= 1.5Δ

√|𝐴| 𝑇∑
𝑡=1

√
𝑡− 1

(𝑡− 1)1.5 + 1.5

≤ 1.5Δ
√|𝐴| 𝑇∑

𝑡=2

1
(𝑡− 1)

≤ 1.5Δ
√|𝐴| ⎛⎜⎜⎝1 +

𝑇

∫
𝑡=2

1
𝑡− 1

𝑑𝑡

⎞⎟⎟⎠
≤ 1.5Δ

√|𝐴| ∗ (1 + ln (𝑡− 1)|𝑇
𝑡=2

) ≤ 1.5Δ
√|𝐴|(ln𝑇 + 1).

So 
∑𝑇
𝑡=1 Δ𝑃

𝑡(𝑎) −Δ𝑄𝑡(𝑎) ≤ 1.5Δ
√|𝐴|(ln𝑇 + 1) + 1.5Δ

√
𝑇 . Since Δ𝑃 𝑡(𝑎) ≤Δ𝑄𝑡(𝑎) +max(0, Δ𝑃 𝑡(𝑎) −Δ𝑄𝑡(𝑎)), so

𝑇∑
𝑡=1

Δ𝑃 𝑡(𝑎) ≤
𝑇∑
𝑡=1

Δ𝑄𝑡(𝑎) + max(0,Δ𝑃 𝑡(𝑎) − Δ𝑄𝑡(𝑎))

=𝑄𝑇 (𝑎) +
𝑇∑
𝑡=1

max(0,Δ𝑃 𝑡(𝑎) − Δ𝑄𝑡(𝑎))

≤Δ(
√|𝐴|+ 1.5)

√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1).

Since the weight sequence 𝑢𝑡
𝑤𝑡

is non-decreasing, we can apply Lemma 5 using weight 𝑢𝑡
𝑤𝑡

with 𝐵 = Δ(
√|𝐴| + 1.5)

√
𝑇 +

1.5Δ
√|𝐴|(ln𝑇 + 1), 𝐶 = 0, and 𝑢

𝑇

𝑤𝑇
= 𝑇 3. Then we can conclude that 𝑅𝑇 (𝑎) ≤ 𝑇 3(Δ(√|𝐴| + 1.5)

√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1)). 

The sum of weights 
∑𝑇
𝑡=1 𝑢𝑡 =

1
𝑇

∑𝑇
𝑡=1 𝑡

4 = 1
𝑇
∗ 𝑇 (𝑇+1)(2𝑇+1)(3𝑇

2+3𝑇−1)
30 = (𝑇+1)(2𝑇+1)(3𝑇 2+3𝑇−1)

30 ≥ 𝑇 4

5 . So the weighted average regret 
𝑅𝑇 (𝑎)∑𝑇
𝑡=1 𝑢𝑡

≤ 5
𝑇
(Δ(

√|𝐴|+ 1.5)
√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1)). □

Proof of Theorem 1. From Lemma 6, we know that for any information set 𝐼 and action 𝑎, 𝑅𝑇 (𝐼, 𝑎) ≤ 5
𝑇
(Δ(

√|𝐴| + 1.5)
√
𝑇 +

1.5Δ
√|𝐴|(ln𝑇 + 1)). Because this holds for arbitrary 𝑎, we have 𝑅𝑇 (𝐼) ≤ 5

𝑇
(Δ(

√|𝐴| + 1.5)
√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1)). From the 
original CFR convergence proof [5], we have 𝑅𝑇

𝑖
≤∑

𝐼𝑖∈𝑖 𝑅𝑇 (𝐼𝑖) ≤ 5|𝑖|
𝑇

(Δ(
√|𝐴| + 1.5)

√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1)). Prior work [27]
has shown that, in two-player zero-sum games, if weighted average regret of player 1 and 2 is 𝑎 and 𝑏, then the weighted average 
strategy is a (𝑎 +𝑏)-Nash equilibrium. Since |1| + |2| = ||, so the weighted average strategy profile of DCFR+ form a 5||

𝑇
(Δ(

√|𝐴|+
1.5)

√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1))-Nash equilibrium. □

Data availability

Data will be made available on request.
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