
Artificial Intelligence 337 (2024) 104232

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Automatically designing counterfactual regret minimization

algorithms for solving imperfect-information games

Kai Li a,b, Hang Xu a,b, Haobo Fu c, Qiang Fu c, Junliang Xing d,∗

a Institute of Automation, Chinese Academy of Sciences, Beijing, China
b School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
c Tencent AI lab, Shenzhen, China
d Department of Computer Science and Technology, Tsinghua University, Beijing, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Imperfect-information game
Nash equilibrium
Regret minimization
Evolution algorithm

Strategic decision-making in imperfect-information games is an important problem in artificial
intelligence. Counterfactual regret minimization (CFR), a family of iterative algorithms, has been
the workhorse for solving these types of games since its inception. In recent years, a series of novel
CFR variants have been proposed, significantly improving the convergence rate of vanilla CFR.
However, most of these new variants are hand-designed by researchers through trial and error,
often based on different motivations, which generally requires a tremendous amount of effort
and insight. This work proposes AutoCFR, a systematic framework that meta-learns novel CFR
algorithms through evolution, easing the burden of manual algorithm design. We first design a
search language that is rich enough to represent various CFR variants. We then exploit a scalable
regularized evolution algorithm with a set of acceleration techniques to efficiently search over
the combinatorial space of algorithms defined by this language. The learned novel CFR algorithm
can generalize to new imperfect-information games not seen during training and performs on
par with or better than existing state-of-the-art CFR variants. In addition to superior empirical
performance, we also theoretically show that the learned algorithm converges to an approximate
Nash equilibrium. Extensive experiments across diverse imperfect-information games highlight
the scalability, extensibility, and generalizability of AutoCFR, establishing it as a general-purpose
framework for solving imperfect-information games.

1. Introduction

From its inception, artificial intelligence (AI) research has been focusing on building agents that can play games like humans.
For more than half a century, games have continued to be AI testbeds for novel ideas, and the resulting achievements have marked
important milestones in the history of AI. Notable examples include the checkers-playing bot Chinook winning a world championship
against top humans [1], Deep Blue beating Kasparov in chess [2], and AlphaGo defeating Lee Sedol [3] in the complex ancient Chinese
game Go. Although substantial progress has been made in solving these perfect-information games, in which all players know the exact
state of the game at every decision point, solving imperfect-information games presents a much more difficult challenge. Imperfect-

* Corresponding author.

E-mail addresses: kai.li@ia.ac.cn (K. Li), xuhang2020@ia.ac.cn (H. Xu), haobofu@tencent.com (H. Fu), leonfu@tencent.com (Q. Fu), jlxing@tsinghua.edu.cn
Available online 11 October 2024
0004-3702/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

(J. Xing).

https://doi.org/10.1016/j.artint.2024.104232
Received 8 February 2023; Received in revised form 19 August 2024; Accepted 27 September 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:kai.li@ia.ac.cn
mailto:xuhang2020@ia.ac.cn
mailto:haobofu@tencent.com
mailto:leonfu@tencent.com
mailto:jlxing@tsinghua.edu.cn
https://doi.org/10.1016/j.artint.2024.104232
https://doi.org/10.1016/j.artint.2024.104232

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Fig. 1. Convergence speed of four CFR-type algorithms and our learned one in four games. Exploitability measures how well a strategy profile approximates a Nash
equilibrium. The closer it is to zero, the closer the policy is to Nash equilibrium. NFG-1 and NFG-2 are two-player zero-sum normal-form games. Kuhn Poker is a
simplified form of poker proposed by [12]. II-Goofspiel(3) represents the imperfect information variant of Goofspiel played with 3 cards. Please refer to Section 4.1
for detailed rules of each game. Different CFR-type algorithms perform distinctively in these games. Our framework learns a new CFR variant performing consistently
well.

information games model strategic interactions between players with hidden information. Solving this type of games is challenging
since it requires reasoning under uncertainty about the opponents’ private information. Meanwhile, hidden information is omnipresent
in real-world decision-making problems, such as negotiation, business, and security, making the research on imperfect-information
games crucial both theoretically and practically.

In this work, we focus on solving two-player zero-sum imperfect-information games. For these games, the common goal is to find a
Nash equilibrium [4] in which no player can improve by deviating from this equilibrium. Playing a strategy from a Nash equilibrium
in a two-player zero-sum game is guaranteed not to lose in expectation even if the opponent uses the best response strategy. As a
popular method of computing Nash equilibrium, counterfactual regret minimization (CFR) [5] has attracted extensive attention due
to its sound theoretical guarantee and strong empirical performance. CFR iteratively minimizes the regrets of both players so that the
time-averaged strategy profile gradually approximates the Nash equilibrium. Over the past decade, many novel CFR variants have
been proposed [6–9] with faster convergence than the vanilla CFR. For example, CFR+ [6,10] was the key to solve the heads-up limit
Texas Hold’em poker. Discounted CFR (DCFR) [7] is a family of algorithms that assigns more weight to the regrets and strategies in
later iterations, which achieves competitive performance compared with other CFR variants. Linear CFR [7,11] is a simplified version
of DCFR and performs well in practice.

Despite the great success of CFR and its improved variants, all of them are hand-designed by researchers based on different
motivations, which usually requires a lot of efforts and insights. CFR-type algorithms have many design choices, e.g., new strategy
calculation, regret accumulation, average strategy calculation, etc. Therefore, it is difficult to systematically consider the space of all
CFR variants to design effective ones that can efficiently solve across a wide variety of games. As shown in Fig. 1, it is clear that CFR
variants perform differently in different games, and no one performs consistently well in all cases. Moreover, the actual convergence
rates of CFR-type algorithms are sometimes different from their theoretical properties. Some variants converge much faster in practice
despite having worse theoretical bounds (e.g., CFR+). These gaps between theoretical properties and practical performance further
increase the difficulty of manually designing effective CFR variants, as theory sometimes does not offer substantial guidance for
creating algorithms with good practical performance. Consequently, designing an algorithm that excels in real applications still
necessitates a trial-and-error approach.

To ease the burden and limitation of manual algorithm design, we propose AutoCFR, a framework that learns to design better CFR
variants than researchers could design manually. Specifically, AutoCFR formulates the problem of designing new CFR variants as one
of meta-learning: an outer loop searches over the space of CFR-type algorithms, and an inner loop performs equilibrium finding using
the learned algorithm on the meta-training games. The objective of the outer loop is to minimize the distance between the strategy
obtained by the inner loop and the Nash equilibrium in each meta-training game. Since the No Free Lunch theorem posits that no
learning algorithm can excel across all domains, it is more pragmatic to develop CFR algorithms suitable for a class of games. Our
AutoCFR framework precisely adheres to this principle by meta-learning CFR algorithms tailored to specific distributions of games.
Our ultimate goal is to discover novel CFR variants capable of generalizing to new testing games, which are similar but not identical
to the meta-training games.

To define the space of CFR-type algorithms, we formalize an domain-specific language for representing CFR algorithms as compu-
tational graphs. This language is expressive enough to represent many existing hand-designed CFR variants as well as other potential
alternatives. Since efficiently searching over the space of algorithms defined by this language is generally difficult, we exploit a scal-
able regularized evolution [13] algorithm with a bag of carefully designed acceleration techniques for the outer loop optimization.
Regularized evolution can scale with the number of compute nodes and has been shown effective for searching supervised learning
and reinforcement learning algorithms [14,15]. We adapt this method to design algorithms for equilibrium finding in imperfect-
information games automatically. We believe that by performing meta-learning in such a rich, combinatorial, open-ended space of
algorithms, we will discover highly general, efficient CFR-type equilibrium-finding algorithms. To summarize, this paper makes three
contributions:

• We propose AutoCFR, the first framework to meta-learn novel CFR-type imperfect-information game equilibrium-finding algo-
rithms.

• We design an expressive language to describe the space of CFR-type algorithms and exploit an efficient and scalable evolutionary
2

algorithm to make the search feasible.

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

• We automatically discover new CFR variants with theoretical convergence guarantees, which outperform other state-of-the-art
CFR variants across multiple imperfect-information games.

This paper is a systematic extension of our preliminary conference version [16] published at AAAI 2022. In particular, the main
changes to the conference version are detailed as follows. We provide a theoretical analysis of the convergence properties of the
algorithms learned by our AutoCFR framework, demonstrating that the learned algorithms theoretically converge to an approximate
Nash equilibrium. We conduct more experimental analysis and ablation studies to verify the effectiveness of our AutoCFR framework.
We also expand the related work, the method, and the experiment sections in more detail to make the paper more self-contained.

2. Preliminary

In this section, we first provide some notations to formulate imperfect-information games. Next, we introduce some important
concepts like best response, Nash equilibrium, and exploitability. Finally, we discuss the vanilla CFR algorithm and its typical variants.

2.1. Notations

Imperfect-information games are usually described by a tree-based formalism called extensive-form games. In an extensive-form
game, there is a finite set = {1, 2, … , 𝑁} of players, and there is also a special player 𝑐 called chance with a fixed known stochastic
strategy. History ℎ consists of all actions taken by players and all possible histories in the game tree form the set . ⊆ are
terminal histories for which no actions are available. 𝑔 ⊑ ℎ refers to the fact that 𝑔 is equal to or a prefix of ℎ. (ℎ) = {𝑎 ∶ ℎ𝑎 ∈}
denotes the actions available in the history, and (ℎ) is the unique player who takes action in the history. For each player 𝑖 ∈ ,
there is a utility function 𝑢𝑖(𝑧) ∶ →ℝ. Δ𝑖 is the range of payoffs reachable by player 𝑖, i.e., Δ𝑖 =max𝑧∈ 𝑢𝑖(𝑧) −min𝑧∈ 𝑢𝑖(𝑧) and
Δ =max𝑖∈ Δ𝑖.

In imperfect-information games, imperfect information is represented by information sets 𝑖 for each player 𝑖 ∈ . If ℎ, ℎ′ are in
the same information set 𝐼𝑖 ∈ 𝑖, player 𝑖 cannot distinguish between them. Take poker as an example, all histories in an information
set differ only in the private card of other players. So we can define (𝐼𝑖) =(ℎ) and (𝐼𝑖) = (ℎ) for arbitrary ℎ ∈ 𝐼𝑖. We define || =max𝑖∈ |𝑖| and || =max𝑖∈ max𝐼𝑖∈𝑖 |(𝐼𝑖)|.

A strategy 𝜎𝑖(𝐼𝑖) assigns a distribution over (𝐼𝑖). 𝜎𝑖(𝐼𝑖, 𝑎) is the probability of player 𝑖 taking action 𝑎. Since all histories in an
information set belonging to player 𝑖 are indistinguishable, the strategies in each of them are identical. Therefore, for any ℎ1 , ℎ2 ∈ 𝐼𝑖,
we have 𝜎𝑖(𝐼𝑖) = 𝜎𝑖(ℎ1) = 𝜎𝑖(ℎ2). A strategy profile 𝜎 = {𝜎𝑖|𝜎𝑖 ∈ Σ𝑖, 𝑖 ∈ } is a specification of strategies for all players, where Σ𝑖
refers to the set of all possible strategies for player 𝑖, and 𝜎−𝑖 denotes the strategies of all players other than player 𝑖. 𝑢𝑖(𝜎𝑖, 𝜎−𝑖) is
player 𝑖’s expected payoff if player 𝑖 plays according to 𝜎𝑖 and the other players play according to 𝜎−𝑖.
𝜋𝜎(ℎ) denotes the history reach probability of ℎ if all players play according to 𝜎. It can be decomposed into each

player’s contribution, i.e., 𝜋𝜎(ℎ) = 𝜋𝜎
𝑖
(ℎ)𝜋𝜎−𝑖(ℎ), where 𝜋𝜎

𝑖
(ℎ) =

∏
ℎ′𝑎⊑ℎ,(ℎ′)=𝑖 𝜎𝑖(ℎ′, 𝑎) is player 𝑖’s contribution and 𝜋𝜎−𝑖(ℎ) =∏

ℎ′𝑎⊑ℎ,(ℎ′)≠𝑖 𝜎(ℎ′)(ℎ′, 𝑎) is all players’ contribution except player 𝑖. The information set reach probability is defined as
𝜋𝜎(𝐼𝑖) =

∑
ℎ∈𝐼𝑖 𝜋

𝜎(ℎ). The interval history reach probability from ℎ′ to ℎ is defined as 𝜋𝜎(ℎ′, ℎ) = 𝜋𝜎(ℎ)∕𝜋𝜎(ℎ′) if ℎ′ ⊑ ℎ.
𝜋𝜎
𝑖
(𝐼𝑖), 𝜋𝜎−𝑖(𝐼𝑖), 𝜋

𝜎
𝑖
(ℎ, ℎ′), 𝜋𝜎−𝑖(ℎ, ℎ

′) are defined similarly.

2.2. Best response and Nash equilibrium

The best response to 𝜎−𝑖 is any strategy BR(𝜎−𝑖) such that 𝑢𝑖(BR(𝜎−𝑖), 𝜎−𝑖) = max𝜎′
𝑖
∈Σ𝑖 𝑢𝑖(𝜎

′
𝑖
, 𝜎−𝑖). The Nash Equilibrium is a

strategy profile 𝜎∗ = (𝜎∗
𝑖
, 𝜎∗−𝑖) where everyone plays a best response: ∀𝑖 ∈ , 𝑢𝑖(𝜎∗𝑖 , 𝜎∗−𝑖) =max𝜎′

𝑖
∈Σ𝑖 𝑢𝑖(𝜎

′
𝑖
, 𝜎∗−𝑖). The exploitability of

a strategy 𝜎𝑖 is defined as 𝑒𝑖(𝜎𝑖) = 𝑢𝑖(𝜎∗𝑖 , 𝜎
∗
−𝑖) − 𝑢𝑖(𝜎𝑖, BR(𝜎𝑖)). In an 𝝐-Nash equilibrium, no player has exploitability higher than 𝜖.

The exploitability of a strategy profile 𝜎 is 𝑒(𝜎) =
∑
𝑖∈ 𝑒𝑖(𝜎𝑖)∕| |. It can be interpreted as the approximation error to the Nash

equilibrium.

2.3. Counterfactual regret minimization

CFR is an iterative regret minimization algorithm for computing Nash equilibrium in extensive-form imperfect-information
games [5]. CFR frequently uses counterfactual value, which is the expected payoff of an information set given that player 𝑖
tries to reach it. Formally, for player 𝑖 at an information set 𝐼 ∈ 𝑖 given a strategy profile 𝜎, the counterfactual value of 𝐼 is
𝑣𝜎
𝑖
(𝐼) =

∑
ℎ∈𝐼 (𝜋𝜎−𝑖(ℎ)

∑
𝑧∈(𝜋𝜎(ℎ, 𝑧)𝑢𝑖(𝑧)). The counterfactual value of an action 𝑎 in 𝐼 is 𝑣𝜎

𝑖
(𝐼, 𝑎) =

∑
ℎ∈𝐼 (𝜋𝜎−𝑖(ℎ)

∑
𝑧∈(𝜋𝜎(ℎ𝑎, 𝑧)𝑢𝑖(𝑧)).

CFR typically starts with a uniform random strategy 𝜎1 . On each iteration 𝑇 , CFR first recursively traverses the game tree using
the strategy 𝜎𝑇 to calculate the instantaneous regret 𝑟𝑇

𝑖
(𝐼, 𝑎) of not choosing action 𝑎 in an information set 𝐼 for player 𝑖, i.e.,

𝑟𝑇
𝑖
(𝐼, 𝑎) = 𝑣𝜎𝑇

𝑖
(𝐼, 𝑎) −𝑣𝜎𝑇

𝑖
(𝐼). Then CFR accumulates the instantaneous regret to obtain the cumulative regret 𝑅𝑇

𝑖
(𝐼, 𝑎) =

∑𝑇
𝑡=1 𝑟

𝑡
𝑖
(𝐼, 𝑎)

and uses regret-matching [17,18] to compute the new strategy for the next iteration:

𝜎𝑇+1
𝑖

(𝐼, 𝑎) =
⎧⎪⎨ 𝑅

𝑇 ,+
𝑖

(𝐼,𝑎)∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼,𝑎′)
,

∑
𝑎′ 𝑅

𝑇 ,+
𝑖

(
𝐼, 𝑎′

)
> 0

1

3

⎪⎩ |(𝐼)| , otherwise

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Table 1

Comparison of CFR and its typical variants (𝛼, 𝛽 , 𝛾 are hyperparameters).

Algorithms Cumulative Regret 𝑅𝑇
𝑖
(𝐼, 𝑎) New Strategy 𝜎𝑇+1

𝑖
(𝐼, 𝑎) Cumulative Strategy 𝐶𝑇

𝑖
(𝐼, 𝑎)

CFR 𝑅𝑇−1
𝑖

(𝐼, 𝑎) + 𝑟𝑇
𝑖
(𝐼, 𝑎) 𝑅𝑇 ,+

𝑖
(𝐼, 𝑎)∕

∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) 𝐶𝑇−1
𝑖

(𝐼, 𝑎) + 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)

CFR+ max(0,𝑅𝑇−1
𝑖

(𝐼, 𝑎) + 𝑟𝑇
𝑖
(𝐼, 𝑎)) 𝑅𝑇 ,+

𝑖
(𝐼, 𝑎)∕

∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) 𝐶𝑇−1
𝑖

(𝐼, 𝑎) + 𝑇 ∗ 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)

Linear CFR 𝑅𝑇−1
𝑖

(𝐼, 𝑎) + 𝑇 ∗ 𝑟𝑇
𝑖
(𝐼, 𝑎) 𝑅𝑇 ,+

𝑖
(𝐼, 𝑎)∕

∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) 𝐶𝑇−1
𝑖

(𝐼, 𝑎) + 𝑇 ∗ 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)

DCFR

𝑅𝑇−1
𝑖

(𝐼, 𝑎) ∗ (𝑇 − 1)𝛼

(𝑇 − 1)𝛼 + 1
+ 𝑟𝑇 (𝐼, 𝑎), if𝑅𝑇−1

𝑖
(𝐼, 𝑎)>0

𝑅𝑇−1
𝑖

(𝐼, 𝑎)∗ (𝑇−1)𝛽

(𝑇−1)𝛽+1
+𝑟𝑇
𝑖
(𝐼, 𝑎), otherwise

𝑅𝑇 ,+
𝑖

(𝐼, 𝑎)∕
∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) 𝐶𝑇−1
𝑖

(𝐼, 𝑎) ∗ (𝑇−1
𝑇

)𝛾 + 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)

ECFR
𝑅𝑇−1
𝑖

(𝐼, 𝑎) +𝑤(𝐼, 𝑎) ∗ 𝑟𝑇
𝑖
(𝐼, 𝑎), if 𝑟𝑇

𝑖
(𝐼, 𝑎)>0

𝑅𝑇−1
𝑖

(𝐼, 𝑎) +𝑤(𝐼, 𝑎) ∗ 𝛽, otherwise

𝑅𝑇 ,+
𝑖

(𝐼, 𝑎) ∗𝑤(𝐼, 𝑎)∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′) ∗𝑤(𝐼, 𝑎)
𝐶𝑇−1
𝑖

(𝐼, 𝑎) + 𝜋𝜎𝑇
𝑖
(𝐼)𝜎𝑇

𝑖
(𝐼, 𝑎)𝑤(𝐼, 𝑎)

where 𝑅𝑇 ,+
𝑖

(𝐼, 𝑎) = max(𝑅𝑇
𝑖
(𝐼, 𝑎), 0). In two-player zero-sum imperfect-information games, if both players play according to CFR on

each iteration then their average strategies �̄�𝑇 converge to an 𝜖-Nash equilibrium in (||2||Δ2∕𝜖2) iterations [5]. �̄�𝑇 is calculated
as:

𝐶𝑇𝑖 (𝐼, 𝑎) =
𝑇∑
𝑡=1

(𝜋𝜎𝑡𝑖 (𝐼)𝜎
𝑡
𝑖 (𝐼, 𝑎)), �̄�

𝑇
𝑖 (𝐼, 𝑎) =

𝐶𝑇
𝑖
(𝐼, 𝑎)∑

𝑎′∈(𝐼)𝐶
𝑇
𝑖
(𝐼, 𝑎′)

,

where 𝐶𝑇
𝑖
(𝐼, 𝑎) denotes player 𝑖’s cumulative strategy for action 𝑎 in information set 𝐼 on iteration 𝑇 .

2.4. CFR variants

Since the birth of CFR, many novel CFR variants have been proposed based on different motivations and greatly improved the
convergence rate of the vanilla CFR. CFR+ [6,10] is like CFR with three small but effective modifications and converges an order of
magnitude faster than CFR. First, to immediately reuse an action when it shows promise of performing well instead of waiting for the
cumulative regret to become positive, CFR+ sets any action with negative cumulative regret to zero on each iteration. Second, CFR+
uses a weighted average strategy where iteration 𝑇 is weighted by 𝑇 rather than using a uniformly-weighted average strategy as in
CFR. Third, CFR+ incorporates alternating updates. In each iteration, one player updates first, and the other player uses those updated
results as input during its update. This ensures that the second updater employs information that is more current than in CFR. DCFR [7]
is a family of algorithms which discounts prior iterations’ cumulative regrets and dramatically accelerates convergence especially in
games where some actions are very costly mistakes. Specifically, on each iteration 𝑇 , DCFR multiplies positive cumulative regret by
𝑇 𝛼∕(𝑇 𝛼 + 1), negative cumulative regret by 𝑇 𝛽∕(𝑇 𝛽 + 1), and cumulative strategy by (𝑇 ∕(𝑇 + 1))𝛾 . We choose the hyperparameters
𝛼=1.5, 𝛽=0, and 𝛾=2, as suggested by the authors. Linear CFR [7] is a special case of DCFR where iteration 𝑇 ’s contribution to
cumulative regrets and cumulative strategy is proportional to 𝑇 . ECFR [8] is based on the motivation that instantaneous regret
reflects the advantage of one action over other actions, and actions with higher instantaneous regrets should be given higher weights.
In practice, ECFR weights action 𝑎 by 𝑤(𝐼, 𝑎) = exp(𝑟𝑖(𝐼, 𝑎) − 1∕|(𝐼)|∑𝑎∈(𝐼) 𝑟𝑖(𝐼, 𝑎)). The comparison of CFR and its variants is
shown in Table 1.

3. Automatically design CFR algorithms

In this section, we first describe the overall framework of our proposed AutoCFR. We then describe the search language which
enables the learning of general CFR-type algorithms and the tailored evolution algorithm, which can efficiently search over the
algorithm space defined by this language.

3.1. The AutoCFR framework

As mentioned earlier, CFR and its variants have obtained remarkable performance in solving imperfect-information games. This
success was possible due to decades of persistent efforts by researchers in the game theory and machine learning communities.
However, as shown in Table 1, there are so many design choices in CFR-type algorithms, making it difficult to consider all of them
systematically. Manual algorithm design requires many insights and efforts, and we believe that there are better CFR variants that
humans have not discovered.

Based on the above considerations, we propose AutoCFR, a meta-learning framework that learns to design novel CFR algorithms.
We use 𝔸 to denote the space of CFR-type algorithms. Given a training set of games 𝔾 = {𝐺𝑖}𝑁𝑖=1, the goal of AutoCFR is to explore
this large space of algorithms for an optimal and generalizable 𝐴∗ ∈ 𝔸, which not only performs well on 𝔾 but also generalizes to
the unknown testing games �̂�. The testing games �̂� and the training games 𝔾 are distinct but share similar characteristics. These
similarities are crucial for the generalization performance of the meta-learned CFR algorithm. Formally, AutoCFR’s training objective
4

function is:

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

𝐴∗ = argmax
𝐴∈𝔸

[∑
𝐺∈𝔾
𝑊𝐺 Eval(𝐴,𝐺)

]
, (1)

where Eval(𝐴, 𝐺) is the inner loop procedure that evaluates algorithm 𝐴’s performance in the training game 𝐺. In AutoCFR, we
meta-learn the optimal CFR variant on multiple meta-training games simultaneously, each of which can be seen as a learning task.
Therefore, this is essentially a multi-task learning problem. The game weights 𝑊𝐺 are used to balance the learning of different tasks,
which are specified by cross-validation. To calculate Eval(𝐴, 𝐺), we first use 𝐴 to iterate 𝑀 times in 𝐺 and calculate the exploitability
𝐸𝐺
𝐴

of the obtained average strategy. We then use the normalized exploitability to summarize the performance (score) of 𝐴, i.e.,

Eval(𝐴,𝐺) = min

(
𝑆𝐺,

log𝐸𝐺CFR − log𝐸𝐺
𝐴

log𝐸𝐺CFR − log𝐸𝐺DCFR

)
, (2)

where 𝐸𝐺CFR is the baseline vanilla CFR’s exploitability, 𝐸𝐺DCFR is the state-of-the-art DCFR’s exploitability in 𝐺. 𝑆𝐺 is the predefined
maximum score under game 𝐺.

Here, we provide a detailed explanation of the motivation behind Equation (2). In Equation (2), we employ two commonly used
normalization techniques, namely log normalization and min-max normalization, to obtain a better numerical distribution of scores.
Considering the wide range of exploitability which spans multiple orders of magnitude, we first employ log normalization to normalize
𝐸𝐺A as log𝐸𝐺A . Log normalization is particularly useful when dealing with data that has a wide range of values. We then utilize min-

max normalization to rescale log𝐸𝐺A within a specific range, i.e.,
MAX−log𝐸𝐺

A
MAX−MIN

, where MAX and MIN are the maximum and minimum
values. The better 𝐴 performs, the lower its log exploitability log𝐸𝐺A , and the higher its score. The performance of vanilla CFR is
generally the worst, with relatively high log exploitability log𝐸𝐺CFR; thus, log𝐸𝐺CFR can be considered an approximation of MAX.
DCFR, currently a strong variant of CFR, exhibits lower log exploitability log𝐸𝐺DCFR and can be regarded as an approximation of MIN.

So, after min-max normalization, the score of 𝐴 is calculated as
log𝐸𝐺

CFR
−log𝐸𝐺

𝐴

log𝐸𝐺
CFR

−log𝐸𝐺
DCFR

. Finally, to avoid algorithm 𝐴 overfitting to 𝐺, we

have imposed a limit on the maximum score that 𝐴 can achieve in 𝐺. So, the final score of 𝐴 on 𝐺 is min
(
𝑆𝐺,

log𝐸𝐺
CFR

−log𝐸𝐺
𝐴

log𝐸𝐺
CFR

−log𝐸𝐺
DCFR

)
which recovers Equation (2).

In summary, AutoCFR’s outer loop searches over the space of CFR-type algorithms (i.e., 𝔸). Its inner loop performs equilibrium
finding using the algorithm 𝐴 ∈ 𝔸 proposed by the outer loop on the meta-training games 𝔾. The objective is to find algorithm
𝐴∗ with a maximal weighted score over the set of training games. We believe that by performing meta-learning in a rich space of
algorithms and with diverse training games, we will automatically discover novel, efficient, and generalizable CFR variants. Next,
we will formally define the search space of the CFR algorithm in Section 3.2. Then, we will introduce the adopted search algorithm
in Section 3.3, and finally, discuss the selection of training and testing games in Section 4.1.

3.2. Search language

Each iteration 𝑇 of the CFR-type algorithms consists of two steps, i.e., policy evaluation and policy update. In the first step,
the algorithm traverses the game tree using the current strategy 𝜎𝑇 to collect the instantaneous regrets 𝑟𝑇 (𝐼, 𝑎) and some auxiliary
information such as the reach probabilities, etc. The second step exploits the collected data to obtain a new strategy 𝜎𝑇+1 for the next
iteration. For example, in vanilla CFR, the second step accumulates regrets and computes a new strategy using regret-matching. As
shown in Table 1, the main difference among CFR variants is mostly in the second step, i.e., calculating the cumulative regret, the
new strategy, and the cumulative strategy.

To better describe the space of CFR-type algorithms, the search language should be rich enough to represent existing CFR variants
while enabling the learning of new algorithms that generalize to a wide range of games. Similar to [19,15], we describe the CFR-type
algorithms as general computer programs with a domain-specific language. The programs are comprised of two-component functions,
i.e., PE (policy evaluation), and PU (policy update). More specifically, we express 𝐴 ∈ 𝔸 as a computational graph, i.e., a directed
acyclic graph of nodes. There are three kinds of nodes:

• Input nodes represent the input to the program 𝐴 and include the current strategy 𝜎𝑇 , the cumulative regret 𝑅𝑇−1, the cumu-
lative strategy 𝐶𝑇−1, the current iteration 𝑇 , constant numbers, etc.

• Operation nodes define the mathematical operations which compute outputs given inputs from parent nodes. This includes
operators from basic math, linear algebra, probability, and statistics. Inputs and outputs to nodes in the computational graph
have two different data types, i.e., vector 𝕍 and scalar ℝ. For example, the current strategy 𝜎𝑇

𝑖
(𝐼), cumulative regret 𝑅𝑇−1

𝑖
(𝐼)

are vectors, and the current iteration 𝑇 , constant numbers are scalars. Table 2 shows the full list of operation nodes.
• Output nodes are the outputs of program 𝐴 which includes the new strategy 𝜎𝑇+1, the updated cumulative regret 𝑅𝑇 , and the

updated cumulative strategy 𝐶𝑇 .

Fig. 2 visualizes the computational graphs of CFR, CFR+, and DCFR. Our search language is highly flexible and can represent
many state-of-the-art CFR variants, as well as many other potential alternatives, which lays the foundation for discovering better
CFR variants. To limit the search space and prioritize more interpretable and computational-efficient algorithms, we limit the total
5

number of operation nodes of the computation graph to 30.

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Table 2

The complete list of operations nodes. 𝕍∕ℝ indicates the variable’s type is vector/scalar. Operations
will broadcast, i.e., adding a scalar to a vector means adding the scalar to each element of the vector.

Operation Inputs Input Types Output Output Type Description

Add 𝑎, �⃗� 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎+ �⃗�
Minus 𝑎, �⃗� 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎− �⃗�
Mul 𝑎, �⃗� 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎 ∗ �⃗�
Max 𝑎, �⃗� 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 =max(𝑎, �⃗�)
Min 𝑎, �⃗� 𝕍∕ℝ,𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 =min(𝑎, �⃗�)
Div 𝑎, 𝑏 𝕍∕ℝ,ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎∕𝑏
Pow 𝑎, 𝑏 𝕍∕ℝ,ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑎𝑏

LT 𝑎, 𝑏 𝕍∕ℝ,ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝐈𝑎<𝑏
GE 𝑎, 𝑏 𝕍∕ℝ,ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝐈𝑎≥𝑏
Exp 𝑎 𝕍∕ℝ 𝑐 𝕍∕ℝ 𝑐 = 𝑒𝑎

Sum 𝑎 𝕍 𝑐 ℝ 𝑐 = sum(𝑎)
Mean 𝑎 𝕍 𝑐 ℝ 𝑐 =mean(𝑎)

Normalize 𝑎 𝕍 𝑐 𝕍 𝑐 =

{
𝑎∕ sum(𝑎) sum(𝑎) > 0

1⃗∕ len(𝑎)otherwise

Fig. 2. Our search language can represent existing CFR variants. (a)(b)(c) visualize the computational graphs of CFR, CFR+, and DCFR. Moreover, this language
enables the description of potentially better CFR variants.

3.3. Evolutionary search algorithm

The outer loop of AutoCFR is to find CFR variants 𝐴∗ that work effectively in the training games 𝔾. However, evaluating thousands
of algorithms from the space 𝔸 over a wide range of games in 𝔾 is prohibitively expensive. Moreover, changing a single node in the
computational graph can drastically change an algorithm’s behavior, making the objective function in Equation (1) non-smooth. We
use the regularized evolution algorithm [13] as the search method due to its simplicity and efficiency for this type of search problems,
which has made remarkable breakthroughs [20,21,15,22,23] in the AutoML community recently. Regularized evolution uses a queue
to maintain a population of 𝑃 programs which can be randomly initialized or initialized by several known programs. The population
is improved through cycles. In each cycle, 𝑇 < 𝑃 programs are first selected, and the program with the highest score is chosen as the
parent program. Then the parent program is mutated to obtain the child program. The child program is added to the queue while the
oldest program in the queue is removed. We use a simple type of mutation, i.e., randomly select a node for replacement, randomly
select an operation with the same output type as that node, and finally choose the inputs for this operation randomly.

There exists a combinatorially large number of algorithms in 𝔸. Furthermore, the inner loop of evaluating a single algorithm
𝐴 in a game 𝐺, i.e., calculating Eval(𝐴, 𝐺), requires multiple CFR-type iterations, which can take up a significant amount of time.
Avoiding needless computation and parallelism is essential to make the outer loop more tractable. By taking inspiration from efforts
in the AutoML community [24], we extend regularized evolution with a bag of tailored acceleration techniques to make the outer
loop optimization more efficient. The complete training procedure is outlined in Algorithm 1.

Program validity check. We perform basic checks to rule out and skip evaluating invalid mutated programs. Specifically, we
randomly generate 100 valid samples and input them into the mutated program 𝐴. If 𝐴 fails to satisfy the following rules, we discard
it and mutate the parent program again. For example, illegal values (e.g., nan, inf) and exceptions should not be generated when exe-
cuting 𝐴; the action probabilities of the current and average strategies produced by 𝐴 should be greater than zero and sum to one, etc.

Functional equivalence check. Since our search language is highly flexible, there are many non-obvious ways of getting func-
tionally equivalent programs. To find duplicates, we generate a hash code for each program. Specifically, we input 20 random samples
6

into the program and concatenate the outputs as its code. If 𝐴’s code is the same as the code of the previously evaluated program 𝐴′ ,

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Algorithm 1: AutoCFR’s training procedure.

Input: training games 𝔾, game weights 𝑊𝐺 , hurdle game 𝐺ℎ , CFR variants {�̂�}, cycle number 𝑁 , population size 𝑃 , tournament size 𝑇
1 Initialize population |ℙ| = 𝑃 with an empty queue;
2 Initialize history set ℍ ← ∅;

3 for algorithm �̂� in {�̂�} do

4 �̂�.𝑠𝑐𝑜𝑟𝑒 ←
∑
𝐺∈𝔾𝑊𝐺 Eval(�̂�, 𝐺) ⊳(Algorithm 2);

5 Add �̂� to ℍ and ℙ;

6 for 𝑛 = 0 to 𝑁 do

7 tournament set 𝕋 ← ∅;
8 while |𝕋 | < 𝑇 do

9 randomly pick a candidate 𝐴𝑐 from ℙ;
10 add 𝐴𝑐 to 𝕋 ;

11 parent algorithm 𝐴 ← highest-scored one in 𝕋 ;
12 child algorithm 𝐴′ ← Mutate(𝐴);
13 𝐴′.𝑣𝑎𝑙𝑖𝑑 ← ValidityCheck(𝐴′);
14 𝐴′.ℎ𝑢𝑟𝑑𝑙𝑒_𝑠𝑐𝑜𝑟𝑒 ← Eval(𝐴′ , 𝐺ℎ);
15 𝐴′.ℎ𝑎𝑠ℎ ← HashEncoding(𝐴′);
16 hurdle threshold 𝜂 ← Percentile(ℙ, 75𝑡ℎ);
17 if 𝐴′.𝑣𝑎𝑙𝑖𝑑 and 𝐴′ .ℎ𝑢𝑟𝑑𝑙𝑒_𝑠𝑐𝑜𝑟𝑒 >= 𝜂 then

18 if ∃𝐴𝑡𝑒𝑚𝑝 ∈ℍ, 𝐴𝑡𝑒𝑚𝑝.ℎ𝑎𝑠ℎ==𝐴′ .ℎ𝑎𝑠ℎ then

19 𝐴′.𝑠𝑐𝑜𝑟𝑒 ← 𝐴𝑡𝑒𝑚𝑝.𝑠𝑐𝑜𝑟𝑒
20 else

21 𝐴′.𝑠𝑐𝑜𝑟𝑒 ←
∑
𝐺∈𝔾𝑊𝐺 Eval(𝐴′, 𝐺)

22 Add 𝐴′ to ℍ and the circular queue ℙ
Output: 𝐴∗ with the highest score

Algorithm 2: Inner loop procedure Eval(𝐴, 𝐺).
Input: Candidate algorithm 𝐴, training game 𝐺, iterations 𝑀 , exploitability 𝐸𝐺CFR , 𝐸𝐺DCFR, maximum score 𝑆𝐺

1 Initialize strategy 𝜎1(𝐼, 𝑎) ← 1∕|(𝐼)|;
2 Initialize cumulative regret 𝑅0(𝐼, 𝑎) ← 0;
3 Initialize cumulative strategy 𝐶0(𝐼, 𝑎) ← 0 ;
4 for 𝑇 = 1 to 𝑀 do

5 𝜋𝜎
𝑇

, 𝑟𝑇 ← 𝐴.PE(𝐺, 𝜎𝑇);
6 𝑖𝑛𝑝𝑢𝑡𝑠 = {𝜎𝑇 , 𝑅𝑇−1, 𝜋𝜎𝑇 , 𝐶𝑇−1, 𝑟𝑇 , 𝑇 , …};
7 𝜎𝑇+1, 𝑅𝑇 , 𝐶𝑇 ← 𝐴.PU(𝑖𝑛𝑝𝑢𝑡𝑠);
8 �̄�𝑀 ← Normalize(𝐶𝑀);
9 𝐸𝐺

𝐴
← �̄�𝑀 ’s exploitability on 𝐺;

Output: Eval(𝐴, 𝐺) ← min
(
𝑆𝐺,

log𝐸𝐺CFR−log𝐸
𝐺
𝐴

log𝐸𝐺CFR−log𝐸
𝐺
DCFR

)

we no longer evaluate 𝐴 and use 𝐴′ saved score as 𝐴’s. Since programs with the same code may have different structures, we still
add 𝐴 to the population to potentially mutate into functionally different programs in the future.

Early hurdles. AutoCFR’s ultimate goal is to find programs that perform well on many different imperfect-information games,
both simple and complex. If the program performs poorly in small simple games, there is no need to evaluate it in large complex
games. We use Kuhn poker as an early hurdle game 𝐺ℎ and maintain the 75𝑡ℎ percentile 𝜂 of the scores of all algorithms in the
population on 𝐺ℎ. If Eval(𝐴, 𝐺ℎ) < 𝜂, we early-stop evaluation 𝐴 on other games and discard it immediately.

Learning from bootstrapping. AutoCFR can learn from scratch by initializing the population with random algorithms or bootstrap
the population with known algorithms. Learning from scratch is less biased toward human-designed algorithms and is more likely to
discover completely different algorithms. However, it may take a long time to converge to practical algorithms. Bootstrapping from
existing algorithms can make the search start from a good starting point and reduce the time required for convergence. We initialize
the population with CFR and its typical variants, including CFR+, Linear CFR, and DCFR.

Parallelism. In our actual implementation, the outer and inner loop are executed in parallel. We use a distributed generator to
implement the outer loop, which inputs the parent programs and outputs the mutated programs. Similarly, we implement the inner
loop as a distributed evaluator, which inputs programs and training games and outputs the scores. These tasks are distributed among
multiple processes on multiple machines, communicating through queues.

4. Results and analysis

4.1. Training and testing games

The choice of training games 𝔾 (e.g., game sizes, payoff ranges, etc.) dramatically affects the learned algorithm and its performance.
The more diverse 𝔾 is, the better the generalization performance of the resulting algorithm. Besides, the games in 𝔾 should not be
7

too large to solve as AutoCFR will evaluate thousands of candidate algorithms during training.

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

We use some commonly used extensive-form games in the imperfect-information game research community. Poker has a long
history as a benchmark for developing algorithms that deal with imperfect-information. The poker game involves all players being
dealt with some private cards visible only to themselves, with players taking structured turns to make actions. Players usually have
the following options: 1) fold, giving up the current game, the other player gets all the pot, 2) call, increasing his/her bet until both
players have the same chips, 3) bet, putting more chips to the pot, 4) raise, putting more chips into the pot than is required to call the
current bet. and 5) check, declining to wager any chips when not facing a bet. Kuhn Poker is a simplified form of poker proposed by
Harold W. Kuhn [12]. There is a deck of three cards often denoted by J, Q, K. At the beginning of the game, each player gets a private
card from the shuffled deck and bets one chip into the pot. Throughout the game, players have four options: folding, calling, betting,
or checking. In Kuhn Poker, each player has a chance to bet one chip. If neither player folds, both players reveal their cards, and the
player with the higher card takes all chips in the pot. The utility for each player is defined as the number of chips after playing minus
the number of chips before playing.

Leduc Poker is a larger poker game first introduced in [25]. The game uses six cards that include two suites, each with three ranks
(Js, Qs, Ks, Jh, Qh, Kh). Like Kuhn Poker, each player initially bets one chip, receives a single private card, and has the same action
options. In Leduc Poker, there are two betting rounds. Each player has a chance to bet two chips in the first round and a chance to bet
four chips in the second round. After the first round, one public card is revealed. If a player’s private card is paired with the public
card, that player wins the game; otherwise, the player with the highest private card wins the game.

Liar’s Dice(x) is a dice game where each player gets an 𝑥-sided dice and a cup used for concealment. At the beginning of the
game, each player rolls the dice under their cup and looks at their hand, keeping it concealed from the other player. The first player
begins bidding of the form 𝑝-𝑞, announcing that there are at least 𝑝 dices with the number of 𝑞 under all of the cups. The highest dice
number 𝑥 can be treated as any number. Then players take turns to take action: 1) bidding of the form 𝑝-𝑞, 𝑝 or 𝑞 must be greater
than the previous player’s bidding, 2) calling ‘Liar’, ending the game immediately and revealing all the dices. If the last bid is not
satisfied, the player calling ‘Liar’ wins the game. The winner’s utility is 1 and the loser -1.

II-Goofspiel(x) is a bidding card game. At the beginning of the game, each player receives 𝑥 cards numbered 1 … 𝑥, and there is a
shuffled point card deck containing cards numbered 1 … 𝑥. The game proceeds in 𝑥 rounds. In each round, players select a card from
their hand to make a sealed bid for the top revealed point card. When both players have chosen their cards, they show their cards
simultaneously. The player who makes the highest bid wins the point card. If the bids are equal, the point card will be discarded.
After 𝑥 rounds, the player with the most point cards wins the game. The winner’s utility is 1 and the loser -1. We use a fixed deck of
decreasing points and an imperfect information variant where players are only told whether they have won or lost the bid, but not
what the other player played.

HUNL Subgames introduced in [7] are heads-up no-limit Texas hold’em (HUNL) subgames generated by and solved in real-time
by the state-of-the-art poker agent Libratus [26]. In HUNL, the two players (P1 and P2) start each hand with 20,000, and both players
are dealt two private cards from a standard 52-card deck. P1 places 100 in the pot and P2 places 50 in the pot. P2 starts the first
round of betting. The players alternate in choosing to fold, call, check or raise. A round ends when a player calls if both players have
acted. After the first round, three community cards are dealt face up for all players to observe, and P1 now starts a similar round of
betting. In the third and fourth rounds, one additional community card is dealt and betting starts again with P1. Unless a player has
folded, the player with the best five-card poker hand, constructed from their two private cards and the five community cards, wins
the pot. In the case of a tie, the pot is split evenly. The authors of [7] have released a total of four subgames which begin on different
betting rounds, named Subgame 1, Subgame 2, Subgame 3, and Subgame 4, respectively. We have chosen two games, Subgame 3
and Subgame 4, for testing. Specifically, HUNL Subgame 3 begins at the start of the final betting round with $500 in the pot. HUNL
Subgame 4 begins at the start of the final betting round with $3,750 in the pot. In the first betting round, we use bet sizes of 0.5x, 1x
the size of the pot, and an all-in bet. In other betting rounds, we use 1x the pot and all-in.

In addition, we manually design some two-player zero-sum normal-form games (NFG-{1-4}) with different characteristics and
payoff ranges for training. Specifically, NFG-1 is a simple two-action game where players decide between two actions. Player 1’s
payoff is 2 if takes the first action, and is 20,000 or 1 if takes the second action, depending on the action of player 2. NFG-2 is a
game where player 1 can choose five actions, i.e., rock, paper, scissors, A1, and A2, while player 2 can only choose rock, paper, and
scissors. When both players choose rock, paper, scissors, the game is a modified rock-paper-scissors game where the winner receives
two points when either player chooses scissors; otherwise, the winner receives one point. But when player 1 chooses the last two
actions, i.e., A1/A2, player 1 will lose 10,000/20,000. NFG-2 is an abstraction of some situations in real-world games that include
highly sub-optimal actions, e.g., all-in irrationally leads to huge losses in poker. NFG-3 is a game with small utility values where
player 1 has three actions, and player 2 has two actions. If player 2 chooses the first action, player 1 will receive 0.001, 0.002, −0.1
for the three actions, respectively. If player 2 chooses the second action, player 1 will receive −0.001, −0.003, −0.002 for the three
actions, respectively. NFG-4 is a game with many actions where player 1 decides between 21 actions and player 2 only has one
choice. The utilities of 21 actions range from -1,000 to 1,000, with an interval of 100. Although these norm-form games seem trivial,
some of them are very challenging to solve efficiently, e.g., the vanilla CFR requires 15,000 iterations to solve NFG-1. The payoff
matrices of the four normal-form games are shown in Table 3.

In particular, the training games 𝔾 include four normal-form games (NFG-{1-4}) and four small extensive-form games, i.e., Kuhn
Poker, II-Goofspiel(3), Liar’s Dice(3), and Liar’s Dice(4). These training games are computationally inexpensive to solve but cover a
diverse set of problems. The testing games include four relatively large extensive-form games, i.e., II-Goofspiel(4), Leduc Poker, HUNL
Subgame 3, and HUNL Subgame 4. These testing games are diverse in size and nontrivial to solve, which are very suitable for testing
8

the generalization performance of the learned algorithm.

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Table 3

Payoff matrices of four normal-form games (NFG-{1-4}). The values in the matrix represent Player 1’s payoffs,
while Player 2’s payoffs are the negative of Player 1’s payoffs.

(a) NFG-1

B1 B2
A1 2 2
A2 20000 1

(b) NFG-3

B1 B2
A1 0.001 -0.001
A2 0.002 -0.003
A3 -0.1 -0.002

(c) NFG-2

Rock Paper Scissors

Rock 0 -1 2
Paper 1 0 -2

Scissors -2 2 0
A1 -10000 -10000 -10000
A2 -20000 -20000 -20000

(d) NFG-4

B1

A1 -1000

A2 -900

A3 -800
... ...

A19 800

A20 900

A21 1000

Table 4

Sizes of the games.

Game #Histories #Infosets #Terminal histories Depth Max size of infosets

NFG-1 7 2 3 3 3

NFG-2 21 2 15 3 5

NFG-3 10 2 6 3 3

NFG-4 43 2 21 3 21

Kuhn Poker 58 12 30 6 2

II-Goofspiel (3) 67 16 36 5 4

Liar’s Dice (3) 1,147 192 567 10 3

Liar’s Dice (4) 8,181 1,024 4,080 12 4

II-Goofspiel (4) 1,077 162 576 7 14

Leduc Poker 9,457 936 5,520 12 5

HUNL Subgame 3 398,112,843 69,184 261,126,360 10 1,980

HUNL Subgame 4 244,005,483 43,240 158,388,120 8 1,980

We measure the sizes of the games in many dimensions and report the results in Table 4. In the table, #Histories measures the
number of histories in the game tree. #Infosets measures the number of information sets in the game tree. #Terminal histories measures
the number of terminal histories in the game tree. Depth measures the depth of the game tree, i.e., the maximum number of actions
in one history. Max size of infosets measures the maximum number of histories that belong to the same information set.

4.2. Training details

We search over a program space containing a maximum of 30 operation nodes. The population size 𝑃 is 300, and the tournament
size 𝑇 is 25, the same as those used in [15]. The parent program mutates with 0.95 probability and remains the same otherwise.
We do not employ the crossover operation based on the observation that it could generate numerous invalid algorithms, thereby
reducing search efficiency. We train AutoCFR on a distributed server with 250 CPU cores and run for about 8 hours, at which point
around 10,000 algorithms have been evaluated. For the inner loop evaluation procedure Eval(𝐴, 𝐺), we set iteration 𝑀 to 1,000 in
all games, except for in Liar’s Dice(4), where 𝑀 is 100 since it is a relatively large game.

4.3. Learned CFR variant: DCFR+

We focus on one particularly interesting new CFR variant, i.e., DCFR+, that was learned by our AutoCFR framework, and that has
good generalization performance on different imperfect-information games:

𝑅𝑇𝑖 (𝐼, 𝑎) = max
(
0,𝑅𝑇−1𝑖 (𝐼, 𝑎) ∗ (𝑇 − 1)1.5

(𝑇 − 1)1.5 + 1.5
+ 𝑟𝑇𝑖 (𝐼, 𝑎)

)
,

𝐶𝑇𝑖 (𝐼, 𝑎) = 𝐶
𝑇−1
𝑖 (𝐼, 𝑎) ∗ 𝑇 − 1

𝑇
+ 𝜋𝜎𝑇𝑖 ∗ 𝑇 3 ∗ 𝜎𝑇𝑖 (𝐼, 𝑎),

𝜎𝑇+1
𝑖

(𝐼, 𝑎) =
𝑅𝑇 ,+
𝑖

(𝐼, 𝑎)∑
𝑎′∈(𝐼)𝑅

𝑇 ,+
𝑖

(𝐼, 𝑎′)
.

(3)

DCFR+’s improvement over existing CFR variants shown in Figs. 3 and 4 is due to two core enhancements: the maximum function
and a new discounting method. Here, we provide some intuitive explanations of why they improve the performance: 1) The most
prominent feature of DCFR+ is the use of max(0, ⋅) to rectify the cumulative regrets, which is similar to regret-matching+ in CFR+.
When the best action suddenly changes, CFR may take a long time to overcome the accumulated negative regret. In contrast, DCFR+
will play the best action immediately since its accumulated negative regret is forgotten thanks to the max(0, ⋅) operator. 2) Similar to
DCFR in Table 1, DCFR+ also discounts the previous iterations and gives higher weights to the later iterations when accumulating
9

strategies and regrets, albeit in a very different way. This discounting mechanism is beneficial when encountering highly suboptimal

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Fig. 3. Comparison of DCFR+ against four CFR variants on eight training games. Another four training games are in Fig. 1.

Fig. 4. Comparison of DCFR+ against four CFR variants on four testing games.

Fig. 5. Comparison of DCFR+ against four CFR variants for a large number of iterations (100,000).

actions, i.e., actions that cause huge mistakes. It is worth noting that DCFR’s authors have tried to combine CFR+ with DCFR, but
they found that the combined algorithm resulted in poor performance. Our AutoCFR framework can automatically discover DCFR+
through evolutionary search without manual algorithm design, which finds a new way to combine the key insights of CFR+ and
DCFR effectively.

Consider the simple two-action game NFG-1. The Nash equilibrium of this game is to choose the first action with 100% probability.
The CFR variants use the uniform random strategy in the first iteration and result in cumulative regrets of 𝑅1 = −4, 999, 𝑅2 = 4, 999.
CFR will take a long time to obtain the optimal strategy, where 𝑅1 > 0 and 𝑅2 < 0. In contrast, DCFR+ directly sets 𝑅1 to zero in
the first iteration and discounts 𝑅2 in the later iterations. As a result, it will take CFR 15,000 iterations, CFR+ 10,001 iterations,
DCFR 1,217 iterations, and DCFR+ only 540 iterations to approach the Nash equilibrium. It demonstrates that DCFR+ can quickly
eliminate the negative effects of suboptimal actions.

We conduct additional experiments on larger games to further assess the scalability of DCFR+. Specifically, we test DCFR+ on
II-Goofspiel (5), II-Goofspiel (6), Liar’s Dice (5), and Liar’s Dice (6). Additionally, we increase the number of iterations to 100,000 to
observe long-term behavior. The results are presented in Fig. 5. The exploitability of DCFR+ decreases faster than or at least as fast as
other CFR variants, indicating that DCFR+ converges to the Nash equilibrium more efficiently. Our findings consistently demonstrate
that DCFR+ outperforms other CFR variants in large games, affirming the scalability of DCFR+ in such contexts.

4.4. Convergence analysis of DCFR+

Besides the superior empirical performance of DCFR+, here we demonstrate that it converges to approximate Nash equilibrium
after enough iterations in two-player zero-sum imperfect-information games theoretically.

Theorem 1. Assume that 𝑇 iterations of DCFR+ are conducted in a two-player zero-sum game. Then the weighted average strategy profile
is a 5||Δ((√|𝐴|+ 1.5)

√
𝑇 + 1.5

√|𝐴|(ln𝑇 + 1))∕𝑇 -Nash equilibrium.

Prior work [27] has shown that, in two-player zero-sum games, if both players’ weighted average regret is 𝜖, then their weighted
average strategies are a 2𝜖-Nash equilibrium. Therefore, the key idea to prove Theorem 1 is to show that each player’s weighted
average regret is upper bounded by 𝜖, which approaches to zero as 𝑇 goes to infinity. We provide the detailed proof in appendix A,
10

which incorporates and extends the proof for the vanilla CFR [5], CFR+ [10] and DCFR [7].

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Fig. 6. The computational graph of PCFR+ using our domain-specific language.

Fig. 7. Comparison of NewPCFR+ against PCFR+.

Theorem 1 shows that DCFR+ achieves similar asymptotic guarantees as CFR, albeit with somewhat larger convergence bound.
However the extensive empirical results in Figs. 3, 4 and 5 demonstrate that in practice our DCFR+ dramatically outperforms CFR.
These observations are similar to the behaviors of CFR+, whose convergence bound is higher than CFR but typically converges much
faster than CFR. These results also validate our motivation that the gaps between theoretical properties and practical performance
increase the difficulty of manually designing effective CFR variants only from the theoretical point of view, since the actual conver-
gence rates of CFR-type algorithms are usually different from their theoretical properties. In contrast, our AutoCFR framework can
search for novel CFR variants with strong generalization ability and practical performance from the rich space of equilibrium-finding
algorithms directly.

4.5. The extensibility of AutoCFR in designing novel CFR algorithms

AutoCFR can automatically discover new CFR algorithms through meta-learning in the computational graph space, which are
represented by a carefully designed domain-specific language. This language is highly extensible; it can not only represent classic
CFR variants (e.g., CFR+) but also can be extended to incorporate the latest developments in CFR (e.g., predictive CFR+ [28]) to find
variants better than the current state-of-the-art algorithms.

Specifically, Predictive CFR+ (PCFR+) is a recently proposed state-of-the-art CFR variant which extends Blackwell approachabil-
ity [29] to regret minimization to form Predictive Regret Matching+ (PRM+). As shown in Fig. 6, our domain-specific language can be
easily extended by incorporating PRM+ to represent PCFR+. To demonstrate the extensibility of AutoCFR, we have integrated these
latest developments into the search space and automatically discovered a new CFR variant as follows, which we named NewPCFR+.

𝑅𝑇𝑖 (𝐼, 𝑎) =
{
𝑅𝑡−1
𝑖

(𝐼, 𝑎) + 4 ∗ 𝑟𝑡
𝑖
(𝐼, 𝑎), if𝑅𝑡−1

𝑖
(𝐼, 𝑎) > 0

𝑟𝑇
𝑖
(𝐼, 𝑎) otherwise,

𝐶𝑇𝑖 (𝐼, 𝑎) =
(
𝐶𝑇−1𝑖 (𝐼, 𝑎) ∗

(
𝑇 − 1
𝑇

)2
+ 𝜋𝜎𝑇𝑖 ∗ 𝜎𝑇𝑖 (𝐼, 𝑎)

)
∗ 𝑇 − 1
𝑇

𝜎𝑇+1
𝑖

(𝐼, 𝑎) =
max

(
𝑅𝑇
𝑖
(𝐼, 𝑎) + 𝑟𝑇

𝑖
(𝐼, 𝑎),0

)2∑
𝑎′∈(𝐼) max

(
𝑅𝑇
𝑖
(𝐼, 𝑎) + 𝑟𝑇

𝑖
(𝐼, 𝑎),0

)2
(4)

As depicted in Fig. 7, NewPCFR+ outperforms PCFR+ in most games. A noteworthy aspect of NewPCFR+ is its utilization of
a square function in computing the new strategy, a feature we believe has not been previously explored in the CFR literature.
These results demonstrate that our AutoCFR framework can stand on the shoulders of researchers, leveraging their latest insights and
discoveries to automatically discover more effective algorithms. We believe this is also why AutoCFR is important for the advancement
11

of game-solving algorithms.

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Table 5

Performance comparison of the best algorithms learned by three AutoCFR variants.

Kuhn Poker II-Goofspiel(4) Leduc Poker HUNL Subgame 3 HUNL Subgame 4

AutoCFR 114.89 ∗ 10−6 𝟏.𝟎𝟒 ∗ 𝟏𝟎−𝟔 𝟏.𝟒𝟔 ∗ 𝟏𝟎−𝟔 𝟐𝟐.𝟎𝟐 ∗ 𝟏𝟎−𝟔 𝟗.𝟖𝟎 ∗ 𝟏𝟎−𝟔
AutoCFR-4 𝟓𝟕.𝟖𝟎 ∗ 𝟏𝟎−𝟔 2.74 ∗ 10−6 2.88 ∗ 10−6 43.29 ∗ 10−6 43.93 ∗ 10−6

AutoCFR-S 144.92 ∗ 10−6 332.71 ∗ 10−6 11363.57 ∗ 10−6 4806.02 ∗ 10−6 7590.12 ∗ 10−6

Fig. 8. Performance curves for learning from scratch and bootstrapping as the number of evaluated algorithms increases. The performance represents the maximum
score within the population, which aligns with the training objective function 𝐴∗ in Equation (1).

4.6. Ablation studies of AutoCFR

4.6.1. Varying the number of training games

The choice of training games dramatically affects the performance of the algorithm learned by our AutoCFR framework. Here,
we specifically consider how the number of training games affects the learned algorithm, and the results are shown in Table 5.
AutoCFR-4, i.e., the learned algorithm using four games (i.e., Kuhn Poker, II-Goofspiel(3), Liar’s Dice(3), and Liar’s Dice(4)), performs
best in the training game Kuhn Poker. However, it underperforms AutoCFR, i.e., the learned algorithm DCFR+ using eight games (i.e.,
Kuhn Poker, II-Goofspiel(3), Liar’s Dice(3), Liar’s Dice(4) and NFG-{1-4}), in the testing games. These results clearly demonstrate that
training with four games suffers from some overfitting, and the additional four normal-form games increase the learned algorithm’s
generalization performance.

4.6.2. Learning from scratch versus bootstrapping

As discussed previously, a crucial step to accelerate AutoCFR’s training process is learning from bootstrapping. We compare
learning from bootstrapping (AutoCFR) with learning from scratch (AutoCFR-S) using the same eight training games (i.e., Kuhn
Poker, II-Goofspiel(3), Liar’s Dice(3), Liar’s Dice(4) and NFG-{1-4}). As shown in Table 5, bootstrapping from existing CFR variants
significantly improves the learning performance of AutoCFR over AutoCFR-S without bootstrapping. In Fig. 8, we further demonstrate
the effectiveness of our search algorithm. AutoCFR substantially enhances the performance (from 1.00 to 1.15) over the state-of-the-
art DCFR algorithm. Meanwhile, AutoCFR-S efficiently finds an algorithm that surpasses CFR by a large margin (from 0.0 to 0.9) even
by learning from scratch. Although there is still room for improvement in learning from scratch, we believe this is primarily due to
AutoCFR-S exploring only a tiny proportion of the vast search space, constrained by the limited budget available for training.

AutoCFR is biased toward existing CFR algorithms through learning with bootstrapping. In contrast, learning from scratch is less
biased toward human-designed algorithms and is more likely to uncover completely different algorithms. Indeed, AutoCFR-S finds
many “unconventional” CFR algorithms by learning from scratch. One top-performing example is as follows:

𝑅𝑇𝑖 (𝐼, 𝑎) =min
(
1, (𝜎𝑇𝑖 + 1.5) ∗ 𝜎𝑇𝑖 (𝐼, 𝑎) ∗ 0.01

+max

(
𝑇 ∗ 𝑟𝑇𝑖 (𝐼, 𝑎),

(
𝜎𝑇
𝑖
(𝐼, 𝑎) + 1.5

)
∗ 𝜎𝑇
𝑖
(𝐼, 𝑎) ∗ 0.01

𝑇

)

∗
max

(
𝐶𝑇
𝑖
(𝐼, 𝑎),1

)∑
𝑎′∈(𝐼) max

(
𝐶𝑇
𝑖
(𝐼, 𝑎′),1

))

𝐶𝑇𝑖 (𝐼, 𝑎) =max

(
min

(
𝑇 ,min

(
𝐶𝑇−1𝑖 (𝐼, 𝑎),

𝑅𝑇−1
𝑖

(𝐼, 𝑎)
1.5

)
+max

(
𝐶𝑇−1𝑖 (𝐼, 𝑎) + 𝑟𝑇𝑖 (𝐼, 𝑎),0

))
,−0.01

)
𝜎𝑇+1
𝑖

(𝐼, 𝑎) =
𝑅𝑇
𝑖
(𝐼, 𝑎) +𝐶𝑇

𝑖
(𝐼, 𝑎)∑

𝑎′∈(𝐼)
(
𝑅𝑇
𝑖
(𝐼, 𝑎′) +𝐶𝑇

𝑖
(𝐼, 𝑎′)

)

(5)

This algorithm is radically different from the existing CFR algorithms. For example, it uses the cumulative strategy to calculate the
12

cumulative regret, the instantaneous regret to calculate the cumulative strategy, and the cumulative strategy to calculate the new

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

strategy. Although this algorithm is somewhat peculiar, we have found that its performance can surpass CFR+ and approach DCFR
in same games. However, it exhibits a more complex form and poor interpretability, which needs further investigation. We plan to
release the computation graphs for the top algorithms for both learning from scratch and learning from bootstrapping to enable further
theoretical and empirical analysis of the discovered algorithms. We believe that this computational graph dataset is of independent
interest to the community and will inspire the design of more effective equilibrium-finding algorithms.

5. Related work

5.1. Counterfactual regret minimization

CFR [5] is the workhorse for solving two-player zero-sum imperfect-information games. Since its birth, many different variants
have been proposed, which can be broadly classified into three categories. The first category tries to make CFR more efficient, and the
typical representatives are CFR+ [6] and DCFR [7]. Besides, Monte Carlo counterfactual regret minimization (MCCFR) [30,31] is a
family of sample-based algorithms which reduces the cost per iteration of vanilla CFR. Some pruning [32,33] and warm starting [34]
algorithms are also used to improve the efficiency of CFR. The second category is to extend CFR for imperfect-information subgame
solving [35,36] and has made a series of breakthroughs in the poker AI community. For example, DeepStack [37], which exploits
a continual re-solving algorithm, defeated ten professional poker players. Libratus [26] defeated four top poker professionals by
using a nested safe subgame solving algorithm [36]. Student of Games [38] is a general-purpose algorithm that combines guided
search, self-play learning, and game-theoretic reasoning, achieves strong empirical performance in both large perfect and imperfect
information games. The third category tries to combine CFR with neural networks to improve CFR’s generalization ability, and the
typical examples are DeepCFR [11], Single DeepCFR [39], and Double Neural CFR [40]. Our AutoCFR belongs to the first category
and is complementary to other CFR variants. For example, DeepCFR can use the algorithm learned by our AutoCFR framework to
further improve its performance.

5.2. Automated machine learning

To make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine
learning (AutoML) [41,42], including meta-learning, which aims to automate the machine learning process has recently become a hot
topic in both academia and industry. One notable example is neural architecture search [43,44,13] which automates network archi-
tecture engineering and aims to learn a network topology that outperform hand-designed architectures. Besides, there are some other
AutoML methods which try to automatically design the learning rules used during backpropagation [45,46], the data augmentation
policies in supervised learning [47] or the intrinsic curiosity reward in reinforcement learning [19]. More recently, AutoML-Zero [14]
automatically finds machine learning algorithms from scratch using basic mathematical operations. AutoCFR shares similar ideas but
is applied to search equilibrium-finding algorithms in imperfect-information games for the first time. To our best knowledge, the
most similar work to our AutoCFR is the “Learning not to Regret” framework proposed in [48], which enhances the efficiency of
regret minimization algorithms through meta-learning a regret prediction network. However, AutoCFR and the methods presented
in [48] exhibit clear differences. AutoCFR can be considered a meta-learning algorithm operating in the computational graph space.
In contrast, [48] presents a meta-learning algorithm in the neural network space. AutoCFR and [48] provide two distinct perspectives
on using meta-learning for game-solving, with AutoCFR’s advantage lying in stronger interpretability due to its use of computational
graphs. The algorithm in [48], utilizing gradient descent, may have advantages in terms of training efficiency. Exploring how to
synergize the strengths of both approaches to obtain more effective game-solving algorithms is an intriguing avenue for future work.

5.3. Evolutionary algorithm

Evolutionary algorithm [49] is a generic population-based metaheuristic optimization algorithm. It uses mechanisms inspired by
biological evolution, such as mutation and selection, where candidate solutions play the role of individuals in the population and the
fitness function determines the quality of the solutions. Evolutionary algorithm can effectively address complex optimization problems
that traditional optimization algorithms struggle to solve. Recent progress using evolutionary algorithms has achieved impressive
results in playing games [50], optimizing neural networks [51,52], and finding novel reinforcement learning algorithms [22,15]. In
contrast, we use evolutionary algorithm with lots of acceleration techniques to search for novel CFR variants for solving imperfect-
information games. Recently, many differentiable search algorithms [53] have been proposed and have been shown to be faster by
several orders of magnitude than evolutionary algorithms. We believe this to be a highly intriguing area for future work to enhance
the efficiency of AutoCFR.

6. Conclusion and future work

This paper introduces AutoCFR, a systematic framework for the automatic design of novel CFR algorithms. By introducing a
specially designed domain-specific language to represent CFR-type algorithms and utilizing a regularized evolution algorithm for
efficient search within the combinatorial space defined by this language, we have successfully discovered new CFR variants that
13

outperform existing state-of-the-art CFR variants. AutoCFR exhibits excellent scalability and generalizability, capable of handling

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

unseen games of different scales and types. It also demonstrates flexibility, allowing for leveraging the latest insights and discoveries
to automatically uncover more effective algorithms.

Our main contributions and insights are as follows: 1) Our work demonstrates that efficient game-solving algorithms can be
automatically discovered through meta-learning, without manual trial and error. This opens up a new paradigm for future algorithm
design. 2) Our domain-specific language is sufficiently rich to represent existing and potential CFR variants. The expressiveness of this
language is pivotal for the successful discovery of new algorithms. 3) The regularized evolution algorithm we adopted, combined with
a series of acceleration techniques, can effectively navigate the vast algorithmic space. This highlights the potential of evolutionary
algorithms in addressing complex combinatorial optimization problems.

In conclusion, AutoCFR offers a new paradigm for solving imperfect-information games, showcasing the immense potential of auto-
matic algorithm design in enhancing computational efficiency and discovering innovative solutions. We anticipate that this approach
will stimulate more research on the automation of algorithm design, ultimately contributing to the development of more efficient and
universally applicable artificial intelligence systems. Looking ahead, there are numerous avenues for future research and develop-
ment. Expanding the search space to encompass Monte Carlo CFR types and incorporating a broader range of imperfect-information
games could further enhance AutoCFR. Another promising direction is to restrict the search space of AutoCFR to algorithms with
regret minimization guarantees. This approach could not only strengthen the theoretical guarantees of the obtained algorithms but
also reduce the size of the search space. Additionally, investigating the integration of neural networks and other machine learning
techniques with the evolved CFR algorithms could lead to even more scalable and efficient game-solving algorithms.

CRediT authorship contribution statement

Kai Li: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources, Project
administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Hang Xu: Visu-
alization, Validation, Software, Data curation. Haobo Fu: Resources. Qiang Fu: Resources. Junliang Xing: Supervision, Investigation,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work is supported in part by the National Science and Technology Major Project (2022ZD0116401); the Natural Science
Foundation of China under Grant 62076238, Grant 62222606, and Grant 61902402; the Jiangsu Key Research and Development
Plan (No. BE2023016); and the China Computer Federation (CCF)-Tencent Open Fund (No. RAGR20200104).

Appendix A. Proof of Theorem 1

We first introduce some notations and equations to facilitate the proof, where the information set 𝐼 is omitted for clarity.

• 𝑣𝑡 =
𝑡1.5

𝑡1.5+1.5 , 𝑤𝑡 =Π𝑇−1
𝑖=𝑡 𝑣𝑖 for 𝑡 < 𝑇 , and 𝑤𝑇 = 1.

• 𝑢𝑡 = 𝑡3Π𝑇−1𝑖=𝑡
𝑖

𝑖+1 = 𝑡
4

𝑇
for 𝑡 < 𝑇 , and 𝑢𝑇 = 𝑇 3.

• 𝑄𝑇 (𝑎) =max
(
0,𝑄𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎)

)
.

• 𝑃𝑇 (𝑎) = 𝑃𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎) =
∑𝑇
𝑡=1𝑤𝑡𝑟

𝑡(𝑎).
• Δ𝑄𝑡(𝑎) =𝑄𝑡(𝑎) −𝑄𝑡−1(𝑎) ≥𝑄𝑡−1(𝑎)𝑣𝑡−1 + 𝑟𝑡(𝑎) −𝑄𝑡−1(𝑎) = 𝑟𝑡(𝑎) − (1 − 𝑣𝑡−1)𝑄𝑡−1(𝑎).
• Δ𝑃 𝑡(𝑎) = 𝑃 𝑡(𝑎) − 𝑃 𝑡−1(𝑎) =𝑤𝑡𝑟𝑡(𝑎) = 𝑟𝑡(𝑎) − (1 − 𝑣𝑡−1)𝑃 𝑡−1(𝑎).

Base on these notations, DCFR+ can be reformulated as:

𝑄𝑇 (𝑎) = max
(
0,𝑄𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎)

)
.

𝐶𝑇 (𝑎) = 𝐶𝑇−1(𝑎)𝑇 − 1
𝑇

+ 𝜋𝜎𝑇𝑖 𝑇
3𝜎𝑇 (𝑎) =

𝑇∑
𝑡=1
𝑢𝑡𝜋
𝜎𝑡

𝑖 𝜎
𝑡(𝑎).

𝜎𝑇+1(𝑎) =𝑄𝑇 ,+
𝑖

(𝑎)∕
∑
𝑎′∈(𝐼)

𝑄𝑇 ,+
𝑖

(𝑎′).

(A.1)

Lemma 1. Given a sequence of strategies 𝜎1, ..., 𝜎𝑇 , each defining a probability distribution over a set of actions , 𝑄𝑡(𝑎) =max(0, 𝑄𝑡−1(𝑎) ∗
𝑣𝑡−1 + 𝑟𝑡(𝑎)), 𝑃 𝑡(𝑎) = 𝑃 𝑡−1(𝑎) ∗ 𝑣𝑡−1 + 𝑟𝑡(𝑎) and 𝑄0(𝑎) = 𝑃 0(𝑎) = 0 for all actions 𝑎 ∈. 𝑄𝑡(𝑎) is then an upper bound of 𝑃 𝑡(𝑎) for all
14

0 ≤ 𝑡 ≤ 𝑇 .

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Proof. We prove this inductively. When 𝑡 = 0, 𝑃 0(𝑎) =𝑄0(𝑎) = 0, so 𝑃 𝑡(𝑎) ≤𝑄𝑡(𝑎) is true for 𝑡 = 0. Suppose 𝑃 𝑡(𝑎) ≤𝑄𝑡(𝑎) is true for
𝑡 = 𝑘. Then 𝑄𝑘+1(𝑎) =max(0, 𝑄𝑘(𝑎) ∗ 𝑣𝑘 + 𝑟𝑘+1(𝑎)) ≥𝑄𝑘(𝑎) ∗ 𝑣𝑘 + 𝑟𝑘+1(𝑎) ≥ 𝑃𝑘(𝑎) ∗ 𝑣𝑘 + 𝑟𝑘+1(𝑎) = 𝑃𝑘+1(𝑎). Thus, 𝑃 𝑡(𝑎) ≤𝑄𝑡(𝑎) holds
for 𝑡 = 𝑘 + 1. By the principle of induction, 𝑃 𝑡(𝑎) ≤𝑄𝑡(𝑎) is true for all 0 ≤ 𝑡 ≤ 𝑇 . □

Lemma 2.
∑
𝑎∈𝑄𝑇 (𝑎)𝑟𝑇+1(𝑎) = 0.

Proof. The player selects actions 𝑎 ∈ on iteration 𝑇 + 1 according to regret-matching, i.e., 𝜎𝑇+1(𝑎) = 𝑄𝑇+(𝑎)∑
𝑏∈𝑄𝑇+(𝑏)

= 𝑄𝑇 (𝑎)∑
𝑏∈𝑄𝑇 (𝑏) .

The expected value 𝑣𝑇+1 on iteration 𝑇 + 1 is 𝑣𝑇+1 =
∑
𝑎∈ 𝜎𝑇+1(𝑎)𝑣𝑇+1(𝑎) =

∑
𝑎∈𝑄𝑇 (𝑎)𝑣𝑇+1(𝑎)∑

𝑏∈𝑄𝑇 (𝑏)
. Then

∑
𝑎∈𝑄𝑇 (𝑎)𝑣𝑇+1 =∑

𝑎∈𝑄𝑇 (𝑎)∗
∑
𝑎∈𝑄𝑇 (𝑎)𝑣𝑇+1(𝑎)∑

𝑏∈𝑄𝑇 (𝑏) =
∑
𝑎∈𝑄𝑇 (𝑎)𝑣𝑇+1(𝑎). So

∑
𝑎∈𝑄𝑇 (𝑎)𝑟𝑇+1(𝑎) =

∑
𝑎∈𝑄𝑇 (𝑎)(𝑣𝑇+1(𝑎) − 𝑣𝑇+1) = 0 □

Lemma 3. Given a set of actions , and any sequence of 𝑇 value functions 𝑣𝑡 ∶ →ℝ with a bound Δ such that |𝑣𝑡(𝑎) − 𝑣𝑡(𝑏)| ≤Δ for all
𝑡 and 𝑎, 𝑏 ∈, then 𝑄𝑇 (𝑎) ≤Δ

√|𝐴|𝑇 for all 𝑎 ∈.

Proof.

(max
𝑎
𝑄𝑇 (𝑎))2 = max

𝑎
𝑄𝑇 (𝑎)2 ≤∑

𝑎

𝑄𝑇 (𝑎)2

=
∑
𝑎

(
max

(
0,𝑄𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎)

))2
≤∑
𝑎

(
𝑄𝑇−1(𝑎)𝑣𝑇−1 + 𝑟𝑇 (𝑎)

)2
=
∑
𝑎

𝑄𝑇−1(𝑎)2𝑣2
𝑇−1 +

∑
𝑎

2𝑄𝑇−1(𝑎)𝑟𝑇 (𝑎)𝑣𝑇−1 +
∑
𝑎

𝑟𝑇 (𝑎)2

=
∑
𝑎

𝑄𝑇−1(𝑎)2𝑣2
𝑇−1 +

∑
𝑎

𝑟𝑇 (𝑎)2 (Lemma 2)

≤ 𝑣2
𝑇−1

∑
𝑎

𝑄𝑇−1(𝑎)2 + |𝐴|Δ2

≤ 𝑣2
𝑇−1(𝑣

2
𝑇−2

∑
𝑎

𝑄𝑇−2(𝑎)2 + |𝐴|Δ2) + |𝐴|Δ2 ≤…

≤
𝑇−1∑
𝑡=1

{Π𝑇−1𝑖=𝑡 𝑣𝑖}
2|𝐴|Δ2 + |𝐴|Δ2 =

𝑇∑
𝑡=1
𝑤2
𝑡 |𝐴|Δ2 ≤ 𝑇 |𝐴|Δ2,

which gives us 𝑄𝑇 (𝑎) ≤Δ
√|𝐴|𝑇 . □

Lemma 4. Given a set of actions , and any sequence of 𝑇 value functions 𝑣𝑡 ∶ →ℝ with a bound Δ such that |𝑣𝑡(𝑎) − 𝑣𝑡(𝑏)| ≤Δ for all
𝑡 and 𝑎, 𝑏 ∈, then −Δ𝑇 ∕2 ≤ 𝑃𝑇 (𝑎) ≤Δ

√|𝐴|𝑇 for all 𝑎 ∈.

Proof. From Lemma 3, we have 𝑄𝑇 (𝑎) ≤Δ
√|𝐴|𝑇 . By Lemma 1, we can conclude that 𝑃𝑇 (𝑎) ≤𝑄𝑇 (𝑎) ≤Δ

√|𝐴|𝑇 . 𝑤𝑡 =Π𝑇−1
𝑖=𝑡

𝑖1.5

𝑖1.5+1.5 ≥
Π𝑇−1
𝑖=𝑡

𝑖

𝑖+1 = 𝑡

𝑇
(𝑖

1.5

𝑖1.5+1 ≥ 𝑖

𝑖+1 is not true when 𝑖 = 1, 2, but can be ignored when 𝑇 is large).
∑𝑇
𝑡=1𝑤𝑡 ≥ 𝑇 (𝑇+1)2𝑇 >

𝑇

2 , 𝑃𝑇 (𝑎) =
∑𝑇
𝑡=1𝑤𝑡𝑟

𝑡(𝑎) ≥
− 𝑇2 Δ. So −Δ𝑇 ∕2 ≤ 𝑃𝑇 (𝑎) ≤Δ

√|𝐴|𝑇 for all 𝑎 ∈. □

Lemma 5. Call a sequence 𝑥1, ..., 𝑥𝑇 of bounded real values 𝐵𝐶 -plausible if 𝐵 > 0, 𝐶 ≤ 0,
∑𝑖
𝑡=1 𝑥𝑡 ≥ 𝐶 for all 𝑖, and

∑𝑇
𝑡=1 𝑥𝑡 ≤ 𝐵. For any

𝐵𝐶 -plausible sequence and any sequence of non-decreasing weights 𝑤𝑡 ≥ 0,
∑𝑇
𝑡=1(𝑤𝑡𝑥𝑡) ≤𝑤𝑇 (𝐵 −𝐶).

Proof. The proof is identical to that of Lemma 1 in [7]. □

Lemma 6. Let be a set of actions, 𝑣𝑡 ∶ →ℝ be a sequence of 𝑇 value functions over with a bound Δ such that |𝑣𝑡(𝑎) − 𝑣𝑡(𝑏)| ≤Δ for
all 𝑡 and 𝑎, 𝑏 ∈, 𝜎𝑡 be the sequence of strategies generated by Equation (A.1). Construct a weighted sequence 𝜎′ 𝑡 in which 𝜎′ 𝑡 is identical
to 𝜎𝑡, but weighted by 𝑢𝑡. Then the weighted regret 𝑅𝑇 (𝑎) of this new sequence is bounded by 𝑇 3(Δ(

√|𝐴|+1.5)
√
𝑇 +1.5Δ

√|𝐴|(ln𝑇 +1)),
and the weighted average regret is bounded by 5(Δ(

√|𝐴|+ 1.5)∕
√
𝑇 + (1.5Δ

√|𝐴|(ln𝑇 + 1))∕𝑇).

Proof. We know that 𝑤𝑡+1 = Π𝑇−1
𝑖=𝑡+1𝑣𝑖 = 𝑤𝑡∕𝑣𝑡 = 𝑤𝑡 ∗

𝑡1.5+1.5
𝑡1.5

, and 𝑢𝑡+1 = (𝑡+1)4
𝑇

= 𝑢𝑡 ∗ (𝑡+1
𝑡
)4. Then 𝑢

𝑡+1

𝑤𝑡+1
= 𝑢𝑡
𝑤𝑡

∗ (𝑡+1
𝑡
)4 ∗ 𝑡1.5

𝑡1.5+1.5 .

Since (𝑡+1
𝑡
)4 ∗ 𝑡1.5

𝑡1.5+1.5 ≥ (𝑡+1
𝑡
)4 ∗ 𝑡

𝑡+1.5 = (𝑡+1
𝑡
)2 ∗ (𝑡+1)2

𝑡(𝑡+1.5) ≥ 1, so 𝑢
𝑡+1

𝑤𝑡+1
>
𝑢𝑡

𝑤𝑡
, and 𝑢

𝑡

𝑤𝑡
is non-decreasing. The weighted regret 𝑅𝑇 (𝑎) =∑ ∑ ∑
15

𝑇
𝑡=1 𝑢𝑡𝑟

𝑡(𝑎) = 𝑇
𝑡=1

𝑢𝑡
𝑤𝑡
(𝑤𝑡𝑟𝑡(𝑎)) =

𝑇
𝑡=1

𝑢𝑡
𝑤𝑡
Δ𝑃 𝑡(𝑎).

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

Δ𝑃 𝑡(𝑎) − Δ𝑄𝑡(𝑎) ≤ [𝑟𝑡(𝑎) − (1 − 𝑣𝑡−1)𝑃 𝑡−1(𝑎)]

− [𝑟𝑡(𝑎) − (1 − 𝑣𝑡−1)𝑄𝑡−1(𝑎)]

= (𝑄𝑡−1(𝑎) − 𝑃 𝑡−1(𝑎))(1 − 𝑣𝑡−1(𝑎))

= (𝑄𝑡−1(𝑎) − 𝑃 𝑡−1(𝑎)) 1.5
(𝑡− 1)1.5 + 1.5

≤
(
Δ
√|𝐴|(𝑡− 1) + (𝑡− 1)

2
Δ
)

1.5
(𝑡− 1)1.5 + 1.5

(Lemma 3, 4)

𝑇∑
𝑡=1

𝑡− 1
2

Δ 1.5
(𝑡− 1)1.5 + 1.5

= 1.5
2

Δ
𝑇∑
𝑡=1

𝑡− 1
(𝑡− 1)1.5 + 1.5

≤ 1.5
2

Δ
𝑇∑
𝑡=2

1
(𝑡− 1)0.5

≤ 1.5
2

Δ
⎛⎜⎜⎝1 +

𝑇

∫
𝑡=2

1√
𝑡− 1

⎞⎟⎟⎠𝑑𝑡
≤ 1.5

2
Δ
(
1 + 2

√
𝑡− 1|||𝑇𝑡=2

)
≤ 1.5Δ

√
𝑇

𝑇∑
𝑡=1

1.5Δ
√|𝐴|(𝑡− 1)

(𝑡− 1)1.5 + 1.5
= 1.5Δ

√|𝐴| 𝑇∑
𝑡=1

√
𝑡− 1

(𝑡− 1)1.5 + 1.5

≤ 1.5Δ
√|𝐴| 𝑇∑

𝑡=2

1
(𝑡− 1)

≤ 1.5Δ
√|𝐴| ⎛⎜⎜⎝1 +

𝑇

∫
𝑡=2

1
𝑡− 1

𝑑𝑡

⎞⎟⎟⎠
≤ 1.5Δ

√|𝐴| ∗ (1 + ln (𝑡− 1)|𝑇
𝑡=2

) ≤ 1.5Δ
√|𝐴|(ln𝑇 + 1).

So
∑𝑇
𝑡=1 Δ𝑃

𝑡(𝑎) −Δ𝑄𝑡(𝑎) ≤ 1.5Δ
√|𝐴|(ln𝑇 + 1) + 1.5Δ

√
𝑇 . Since Δ𝑃 𝑡(𝑎) ≤Δ𝑄𝑡(𝑎) +max(0, Δ𝑃 𝑡(𝑎) −Δ𝑄𝑡(𝑎)), so

𝑇∑
𝑡=1

Δ𝑃 𝑡(𝑎) ≤
𝑇∑
𝑡=1

Δ𝑄𝑡(𝑎) + max(0,Δ𝑃 𝑡(𝑎) − Δ𝑄𝑡(𝑎))

=𝑄𝑇 (𝑎) +
𝑇∑
𝑡=1

max(0,Δ𝑃 𝑡(𝑎) − Δ𝑄𝑡(𝑎))

≤Δ(
√|𝐴|+ 1.5)

√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1).

Since the weight sequence 𝑢𝑡
𝑤𝑡

is non-decreasing, we can apply Lemma 5 using weight 𝑢𝑡
𝑤𝑡

with 𝐵 = Δ(
√|𝐴| + 1.5)

√
𝑇 +

1.5Δ
√|𝐴|(ln𝑇 + 1), 𝐶 = 0, and 𝑢

𝑇

𝑤𝑇
= 𝑇 3. Then we can conclude that 𝑅𝑇 (𝑎) ≤ 𝑇 3(Δ(√|𝐴| + 1.5)

√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1)).

The sum of weights
∑𝑇
𝑡=1 𝑢𝑡 =

1
𝑇

∑𝑇
𝑡=1 𝑡

4 = 1
𝑇
∗ 𝑇 (𝑇+1)(2𝑇+1)(3𝑇

2+3𝑇−1)
30 = (𝑇+1)(2𝑇+1)(3𝑇 2+3𝑇−1)

30 ≥ 𝑇 4

5 . So the weighted average regret
𝑅𝑇 (𝑎)∑𝑇
𝑡=1 𝑢𝑡

≤ 5
𝑇
(Δ(

√|𝐴|+ 1.5)
√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1)). □

Proof of Theorem 1. From Lemma 6, we know that for any information set 𝐼 and action 𝑎, 𝑅𝑇 (𝐼, 𝑎) ≤ 5
𝑇
(Δ(

√|𝐴| + 1.5)
√
𝑇 +

1.5Δ
√|𝐴|(ln𝑇 + 1)). Because this holds for arbitrary 𝑎, we have 𝑅𝑇 (𝐼) ≤ 5

𝑇
(Δ(

√|𝐴| + 1.5)
√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1)). From the
original CFR convergence proof [5], we have 𝑅𝑇

𝑖
≤∑

𝐼𝑖∈𝑖 𝑅𝑇 (𝐼𝑖) ≤ 5|𝑖|
𝑇

(Δ(
√|𝐴| + 1.5)

√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1)). Prior work [27]
has shown that, in two-player zero-sum games, if weighted average regret of player 1 and 2 is 𝑎 and 𝑏, then the weighted average
strategy is a (𝑎 +𝑏)-Nash equilibrium. Since |1| + |2| = ||, so the weighted average strategy profile of DCFR+ form a 5||

𝑇
(Δ(

√|𝐴|+
1.5)

√
𝑇 + 1.5Δ

√|𝐴|(ln𝑇 + 1))-Nash equilibrium. □

Data availability

Data will be made available on request.

References

[1] J. Schaeffer, One jump ahead: challenging human supremacy in checkers, ICGA J. 20 (2) (1997) 93.
[2] M. Campbell, A.J. Hoane Jr., F.-h. Hsu, Deep blue, Artif. Intell. 134 (1–2) (2002) 57–83.
[3] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the

game of Go with deep neural networks and tree search, Nature 529 (7587) (2016) 484–489.
16

[4] J.J.F. Nash, Equilibrium points in n-person games, Proc. Natl. Acad. Sci. USA 36 (1) (1950) 48–49.

http://refhub.elsevier.com/S0004-3702(24)00168-1/bib2BB1B444FDB0A6A73616616DF41D19F6s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib6D5AAE4715F45F7D054B098E29FCBEE5s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibCC6D2D647A6291293026323EA3E7649Ds1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibCC6D2D647A6291293026323EA3E7649Ds1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib997D5545F42264383349983BA033215As1

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

[5] M. Zinkevich, M. Johanson, M. Bowling, C. Piccione, Regret minimization in games with incomplete information, in: Advances in Neural Information Processing
Systems, 2007, pp. 1729–1736.

[6] O. Tammelin, Solving large imperfect information games using CFR+, arXiv :1407 .5042, 2014.
[7] N. Brown, T. Sandholm, Solving imperfect-information games via discounted regret minimization, in: AAAI Conference on Artificial Intelligence, 2019,

pp. 1829–1836.
[8] H. Li, X. Wang, S. Qi, J. Zhang, Y. Liu, Y. Wu, F. Jia, Solving imperfect-information games via exponential counterfactual regret minimization, arXiv :2008 .02679,

2020.
[9] G. Farina, C. Kroer, N. Brown, T. Sandholm, Stable-predictive optimistic counterfactual regret minimization, in: International Conference on Machine Learning,

2019, pp. 1853–1862.
[10] M. Bowling, N. Burch, M. Johanson, O. Tammelin, Heads-up limit hold’em poker is solved, Science 347 (6218) (2015) 145–149.
[11] N. Brown, A. Lerer, S. Gross, T. Sandholm, Deep counterfactual regret minimization, in: International Conference on Machine Learning, 2019, pp. 793–802.
[12] H.W. Kuhn, 9. a simplified two-person poker, in: Contributions to the Theory of Games (AM-24), vol. I, Princeton University Press, 2016, pp. 97–104.
[13] E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image classifier architecture search, in: AAAI Conference on Artificial Intelligence, 2019,

pp. 4780–4789.
[14] E. Real, C. Liang, D. So, Q. Le, AutoML-zero: evolving machine learning algorithms from scratch, in: International Conference on Machine Learning, 2020,

pp. 8007–8019.
[15] J.D. Co-Reyes, Y. Miao, D. Peng, E. Real, Q.V. Le, S. Levine, H. Lee, A. Faust, Evolving reinforcement learning algorithms, in: International Conference on Learning

Representations, 2020, pp. 1–15.
[16] H. Xu, K. Li, H. Fu, Q. Fu, J. Xing, AutoCFR: learning to design counterfactual regret minimization algorithms, in: AAAI Conference on Artificial Intelligence,

2022.
[17] S. Hart, A. Mas-Colell, A simple adaptive procedure leading to correlated equilibrium, Econometrica 68 (5) (2000) 1127–1150.
[18] N. Cesa-Bianchi, G. Lugosi, Prediction, Learning, and Games, Cambridge University Press, 2006.
[19] F. Alet, M.F. Schneider, T. Lozano-Perez, L.P. Kaelbling, Meta-learning curiosity algorithms, in: International Conference on Learning Representations, 2019,

pp. 1–21.
[20] A. Piergiovanni, A. Angelova, A. Toshev, M.S. Ryoo, Evolving space-time neural architectures for videos, in: International Conference on Computer Vision, 2019,

pp. 1793–1802.
[21] A. Faust, A. Francis, D. Mehta, Evolving rewards to automate reinforcement learning, arXiv :1905 .07628, 2019.
[22] J.K. Franke, G. Koehler, A. Biedenkapp, F. Hutter, Sample-efficient automated deep reinforcement learning, in: International Conference on Learning Represen-

tations, 2020, pp. 1–23.
[23] Y. Ci, C. Lin, M. Sun, B. Chen, H. Zhang, W. Ouyang, Evolving search space for neural architecture search, in: International Conference on Computer Vision,

2021, pp. 6659–6669.
[24] F. Hutter, L. Kotthoff, J. Vanschoren, Automated Machine Learning: Methods, Systems, Challenges, Springer Nature, 2019.
[25] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings, C. Rayner, Bayes’ bluff: opponent modelling in poker, in: Proceedings of the Conference on

Uncertainty in Artificial Intelligence, 2005, pp. 550–558.
[26] N. Brown, T. Sandholm, Superhuman AI for heads-up no-limit poker: libratus beats top professionals, Science 359 (6374) (2018) 418–424.
[27] N. Brown, T. Sandholm, Regret transfer and parameter optimization, in: AAAI Conference on Artificial Intelligence, 2014.
[28] G. Farina, C. Kroer, T. Sandholm, Faster game solving via predictive Blackwell approachability: connecting regret matching and mirror descent, in: Proceedings

of the AAAI Conference on Artificial Intelligence, 2021, pp. 5363–5371.
[29] D. Blackwell, An analog of the minimax theorem for vector payoffs, Pac. J. Math. 6 (1) (1956) 1–8.
[30] M. Lanctot, K. Waugh, M. Zinkevich, M. Bowling, Monte Carlo sampling for regret minimization in extensive games, Adv. Neural Inf. Process. Syst. 22 (2009)

1078–1086.
[31] M. Schmid, N. Burch, M. Lanctot, M. Moravčík, R. Kadlec, M. Bowling, Variance reduction in Monte Carlo counterfactual regret minimization (VR-MCCFR) for

extensive form games using baselines, in: AAAI Conference on Artificial Intelligence, 2019, pp. 2157–2164.
[32] N. Brown, T. Sandholm, Regret-based pruning in extensive-form games, Adv. Neural Inf. Process. Syst. 28 (2015) 1972–1980.
[33] N. Brown, C. Kroer, T. Sandholm, Dynamic thresholding and pruning for regret minimization, in: AAAI Conference on Artificial Intelligence, 2017, pp. 421–429.
[34] N. Brown, T. Sandholm, Strategy-based warm starting for regret minimization in games, in: AAAI Conference on Artificial Intelligence, vol. 30, 2016.
[35] S. Ganzfried, T. Sandholm, Endgame solving in large imperfect-information games, in: Proceedings of the International Conference on Autonomous Agents and

Multiagent Systems, 2015, pp. 37–45.
[36] N. Brown, T. Sandholm, Safe and nested subgame solving for imperfect-information games, in: Advances in Neural Information Processing Systems, 2017,

pp. 689–699.
[37] M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M. Johanson, M. Bowling, Deepstack: expert-level artificial intelligence in

heads-up no-limit poker, Science 356 (6337) (2017) 508–513.
[38] M. Schmid, M. Moravčík, N. Burch, R. Kadlec, J. Davidson, K. Waugh, N. Bard, F. Timbers, M. Lanctot, G.Z. Holland, et al., Student of games: a unified learning

algorithm for both perfect and imperfect information games, Sci. Adv. 9 (46) (2023) eadg3256.
[39] E. Steinberger, Single deep counterfactual regret minimization, arXiv preprint, arXiv :1901 .07621.
[40] H. Li, K. Hu, S. Zhang, Y. Qi, L. Song, Double neural counterfactual regret minimization, in: International Conference on Learning Representations, 2020.
[41] Q. Yao, M. Wang, Y. Chen, W. Dai, Y.-F. Li, W.-W. Tu, Q. Yang, Y. Yu, Taking human out of learning applications: a survey on automated machine learning,

arXiv :1810 .13306, 2019.
[42] X. He, K. Zhao, X. Chu, Automl: a survey of the state-of-the-art, Knowl.-Based Syst. 212 (2021) 106622.
[43] B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, in: International Conference on Learning Representations, 2017, pp. 1–16.
[44] A. Brock, T. Lim, J.M. Ritchie, N.J. Weston, SMASH: one-shot model architecture search through hypernetworks, in: International Conference on Learning

Representations, 2018, pp. 1–21.
[45] M. Andrychowicz, M. Denil, S. Gomez, M.W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, N. De Freitas, Learning to learn by gradient descent by gradient descent,

in: Advances in Neural Information Processing Systems, 2016, pp. 3981–3989.
[46] S. Ravi, H. Larochelle, Optimization as a model for few-shot learning, in: International Conference on Learning Representations, 2016.
[47] E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, AutoAugment: learning augmentation strategies from data, in: IEEE Conference on Computer Vision and

Pattern Recognition, 2019.
[48] D. Sychrovský, M. Šustr, E. Davoodi, M. Bowling, M. Lanctot, M. Schmid, Learning not to regret, in: Proceedings of the AAAI Conference on Artificial Intelligence,

2024, pp. 15202–15210.
[49] D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, Found. Genet. Algorithms 1 (1991) 69–93.
[50] D.G. Wilson, S. Cussat-Blanc, H. Luga, J.F. Miller, Evolving simple programs for playing atari games, in: Genetic and Evolutionary Computation Conference,
17

2018, pp. 229–236.

http://refhub.elsevier.com/S0004-3702(24)00168-1/bib4D70CAC887D0BC698580C8F1634E3EBAs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib4D70CAC887D0BC698580C8F1634E3EBAs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib7CC934B32B99FDBA402C102CC3950C20s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibB20461C0F55AAC5E38858EA302A174DDs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibB20461C0F55AAC5E38858EA302A174DDs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib1B905D67888253553E7382649157EC03s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib1B905D67888253553E7382649157EC03s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibE6B391F68D26BB876C1F99123415DAFDs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibE6B391F68D26BB876C1F99123415DAFDs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibBC2A15538199AD8CF5D9D2B7C61C3A0Fs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib76ADAA6D508F53F5FAC1304152AE402Cs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib3973636F9A4D88127EAFEDCF51708505s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibB7683FE568F7382336352E4486AD6000s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibB7683FE568F7382336352E4486AD6000s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibCCF4BD9195695EE49CC606EE64775E3Fs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibCCF4BD9195695EE49CC606EE64775E3Fs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib33FA818E84FA2859A32A4958B2A4C43Cs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib33FA818E84FA2859A32A4958B2A4C43Cs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib9E16DF49D1AD7D45F0C2E9111B0AC77Cs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib9E16DF49D1AD7D45F0C2E9111B0AC77Cs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib397488357A0319E5FBBE04DCAB452BDAs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib85061643B4AF038500C80F5FA1E0408Fs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibEFC7B008F93E3CFF72D38C364455C398s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibEFC7B008F93E3CFF72D38C364455C398s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib9F90BF1FF2044A9398533D6C2984D137s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib9F90BF1FF2044A9398533D6C2984D137s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib16FC4FFBBEAC5B25B1C10931A52D85CFs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib45E2DAC6AACB9A8FBE654821F722D50Bs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib45E2DAC6AACB9A8FBE654821F722D50Bs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibE5D739EDC43D5DBF019108DA868FF263s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibE5D739EDC43D5DBF019108DA868FF263s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib83CE07EC7B140118FD7ADDF93CB91AFEs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibB74ED2FCA05B2246DCBDC80805B772D6s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibB74ED2FCA05B2246DCBDC80805B772D6s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib6E11B23845AD0AA26CBE89AD929A1B0Ds1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib070C71D4C571C43F406CE925CFA2D794s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibA86A29E75D05E597C2DF215BAE26E4B7s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibA86A29E75D05E597C2DF215BAE26E4B7s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib571302C21DA8776325762CC669E6A5DBs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibEB8F5FA0C5FA21DEEF7C561B7D6E6E62s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibEB8F5FA0C5FA21DEEF7C561B7D6E6E62s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib8A83B791DCB2C771B18EC3FC694AB522s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib8A83B791DCB2C771B18EC3FC694AB522s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibE4134140EFEE63B08F60D015A7F95519s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibEB7FA86BC39944A7C5E2D96FF236D5C5s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib6F442B9544555CC1EF48F3D7727195B2s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibAFDBCAAC11BE4C9B4EA10DBEE88D3EA9s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibAFDBCAAC11BE4C9B4EA10DBEE88D3EA9s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibA739019DA583BF5D0623145F714B08F5s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibA739019DA583BF5D0623145F714B08F5s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib2501DBDB6606FB6D2FB9CF2322818899s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib2501DBDB6606FB6D2FB9CF2322818899s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibBB2360D890C866F3ACC7E15CDBE86D63s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibBB2360D890C866F3ACC7E15CDBE86D63s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibED6464C6D8E9EB29AB6B77ABC255557Es1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibBADCB31B5B82CD3609606B4C1378FB77s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibC9EEDED18A1E8B25DA8D987084A5E00As1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibC9EEDED18A1E8B25DA8D987084A5E00As1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibE02CB21F4C1A7F8D653EEFA314DC78B0s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib5A8CB23485080535CD7A29FAF01C0906s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib2F4022421C462E4615602F41FE9A18D8s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib2F4022421C462E4615602F41FE9A18D8s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib78A3A9C5632E47E2A6516D93EBDB8D1Bs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib78A3A9C5632E47E2A6516D93EBDB8D1Bs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibE4607997A09AD20959E7E1A379398FBDs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib8244163709C8F892DAEC6379643A794Es1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib8244163709C8F892DAEC6379643A794Es1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibBED0B6A093E6270E8CCF6BEB0230C3C9s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibBED0B6A093E6270E8CCF6BEB0230C3C9s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib6978EEAFCFAE2660C689DFBB36F241E1s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib391D5A214C23220BDF3E5F74ABCF1E9Cs1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bib391D5A214C23220BDF3E5F74ABCF1E9Cs1

Artificial Intelligence 337 (2024) 104232K. Li, H. Xu, H. Fu et al.

[51] X. Cui, W. Zhang, Z. Tüske, M. Picheny, Evolutionary stochastic gradient descent for optimization of deep neural networks, in: Advances in Neural Information
Processing Systems, 2018, pp. 6051–6061.

[52] S.R. Young, P. Devineni, M. Parsa, J.T. Johnston, B. Kay, R.M. Patton, C.D. Schuman, D.C. Rose, T.E. Potok, Evolving energy efficient convolutional neural
networks, in: International Conference on Big Data, 2019, pp. 4479–4485.

[53] A. Heuillet, A. Nasser, H. Arioui, H. Tabia, Efficient automation of neural network design: a survey on differentiable neural architecture search, ACM Comput.
18

Surv. 56 (11) (2024) 1–36.

http://refhub.elsevier.com/S0004-3702(24)00168-1/bibCE6ADBFBE6A37E9FA0344108F40D0F57s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibCE6ADBFBE6A37E9FA0344108F40D0F57s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibC6BCC8CE72AE564A039F4270441EBA37s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibC6BCC8CE72AE564A039F4270441EBA37s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibFF8EA3A7DEEEAE1B3561154094F67DA3s1
http://refhub.elsevier.com/S0004-3702(24)00168-1/bibFF8EA3A7DEEEAE1B3561154094F67DA3s1

	Automatically designing counterfactual regret minimization algorithms for solving imperfect-information games
	1 Introduction
	2 Preliminary
	2.1 Notations
	2.2 Best response and Nash equilibrium
	2.3 Counterfactual regret minimization
	2.4 CFR variants

	3 Automatically design CFR algorithms
	3.1 The AutoCFR framework
	3.2 Search language
	3.3 Evolutionary search algorithm

	4 Results and analysis
	4.1 Training and testing games
	4.2 Training details
	4.3 Learned CFR variant: DCFR+
	4.4 Convergence analysis of DCFR+
	4.5 The extensibility of AutoCFR in designing novel CFR algorithms
	4.6 Ablation studies of AutoCFR
	4.6.1 Varying the number of training games
	4.6.2 Learning from scratch versus bootstrapping

	5 Related work
	5.1 Counterfactual regret minimization
	5.2 Automated machine learning
	5.3 Evolutionary algorithm

	6 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Proof of Theorem 1
	Data availability
	References

