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Abstract—Reinforcement learning (RL) algorithms typically re-
quire orders of magnitude more interactions than humans to learn
effective policies. Research on memory in neuroscience suggests
that humans’ learning efficiency benefits from associating their
experiences and reconstructing potential events. Inspired by this
finding, we introduce a human brainlike memory structure for
agents and build a general learning framework based on this struc-
ture to improve the RL sampling efficiency. Since this framework
is similar to the memory reconstruction process in psychology, we
name the newly proposed RL framework as graph-based memory
reconstruction (GBMR). In particular, GBMR first maintains an
attribute graph on the agent’s memory and then retrieves its critical
nodes to build and update potential paths among these nodes.
This novel pipeline drives the RL agent to learn faster with its
memory-enhanced value functions and reduces interactions with
the environment by reconstructing its valuable paths. Extensive
experimental analyses and evaluations in the grid maze and some
challenging Atari environments demonstrate GBMRs superiority
over traditional RL methods. We will release the source code
and trained models to facilitate further studies in this research
direction.

Impact Statement—The problem of sampling efficiency has al-
ways been an essential issue in reinforcement learning. It is di-
rectly related to the interaction cost between an agent and the
environment. However, previous approaches pay little attention to
the experience storage structure and the utilization mechanism.
Our proposed GBMR framework gives substantial innovation for
both aspects. The framework is highly adaptable and offers various
possible approaches to studying sampling efficiency problems in
reinforcement learning methods.

Index Terms—Experience replay (ER), graph model, memory
reconstruction, reinforcement learning (RL), sample efficiency.
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I. INTRODUCTION

R EINFORCEMENT learning (RL) agents have achieved
superhuman performances in various game environments,

such as Atari 2600 games [1], [2], Go [3], [4], [5], and Star-
Craft [6]. Despite significant achievements in the last decade,
these techniques usually require several orders of magnitude
more interactions with the environment than humans to reach an
equivalent performance. How can we as humans be so efficient?
Researchers have long suggested that explicit, writable memory
plays a vital role in the human learning process [7], [8]. Mem-
ories allow a system to reason in complex ways over relative
information or perform tasks requiring storing and accessing
information over longer timescales [9]. Machines and organisms
that rapidly encode the experience into memory can later draw
on those memories to quickly learn new knowledge from a few
examples [10].

In neuroscience research on memory, Richard Semon intro-
duced the term “engram” to describe the neural substrate for
storing and recalling memories [11], [12]. Semon proposed that
an engram is a subset of cells activated by an experience and that
these cells undergo persistent chemical and physical changes.
Recent experiments [13], [14], [15] have confirmed Semon’s
hypothesis. They experimentally showed that a collection of
specifically connected engrams distributed across numerous
brain regions constitutes memories. Subsequent reactivation
of the engrams induces memory retrieval [16]. On the other
hand, based on Semon’s theory about the existence of memory,
Hebb [17] proposed a hypothesis about memory learning and
updating. Hebb pointed out the significance of synaptic plasticity
(the increase in synaptic strength between neurons) in memory
updating. This idea has also been recently reported to be scien-
tifically correct by Tonegawa et al. [18] and Zhang et al. [19].
This memory learning process is called memory reconstruction
by Bartlett [20] in social psychology, and humans recall an event
or a story in this process. To reconstruct events, we have to pull
from our knowledge of similar events to fill in the missing part
of memory, enriching our memory [21], [22].

There are also many methods in RL that can be seen as setting
up memory for the agent, such as storing the original data or the
episodic trajectories. Experience replay (ER) methods [1], [2],
[23], [24] “memorize” historical data directly and use it in the
current environment by sampling. However, the ER method only
stores data without considering their association. Model-based
RL methods (e.g., [25], [26]) transform history into a model of
the environment and then predict upcoming states. Episodic RL
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methods (e.g., [27], [28], [29], [30]) store good experiences in a
tabular-based nonparametric memory and rapidly latch onto past
successful policies when encountering similar states. Although
the methods mentioned above try to use experience storage to
improve sample efficiency, these research works on the agent’s
memory have been mostly restricted to their limited storage
structure. The lack of a reasonable storage structure leads to
the inability to construct an efficient recall process.

In this work, we first introduce Semon’s concept of connected
engrams in neuroscience into RL to design an agent’s memory
structure. We imitate the netlike connected engrams in the human
brain to establish an attributed graph, which models agents’
experience and policy. In particular, we model states in RL as at-
tributed nodes and model actions taken by the agent as the edges
in the graph. The state–action values are used as weights on the
edges. Agents with attributed graphs make decisions by reading
similar scenes from current observations and memories from
those scenes. After an episode of interactions, we write these
experiences into the graph to update memory. This attributed
graph will store states, the relationships among the states, and
the agent’s policies.

Based on this new memory structure, we proposed a graph-
based memory reconstruction (GBMR) framework to mimic
Bartlett’s reconstruction mechanism of human memory. Follow-
ing experience accumulation and reconstruction of the brain,
we design two corresponding processes, 1) Interaction and 2)
Reflection, for the GBMR framework. The Interaction process
constructs a memory graph with our proposed structure by
interacting with the environment. With this graph in mind, the
agent reconstructs and updates memories to learn its policy,
which we name the Reflection process. In this process, GBMR
abstracts key nodes from the memory graph and updates the
edge attributes of the reconstructed potential paths among these
key nodes. To help the agent update the policy with as few inter-
actions as possible, the Interaction process updates the policy
through realistic actions, and the Reflection process updates the
policy by reorganizing some new paths by these past fragments
and re-estimating the crucial memory through the diffusion of
information on the graph.

We in this work make three main original contributions as
follows.

1) To our best knowledge, we propose for the first time that,
just as memory structure plays a vital role in the human’s
learning process, designing appropriate memory structure,
and reconstruction schemes also promote efficient learn-
ing for the RL agents.

2) We inventively design an attributed graph representation
to model the agent’s memory in RL, containing state
transitions, and agent policy. This nonparametric model
elegantly represents the RL agent’s learning process and
provides a suitable form for memory reconstruction.

3) We present GBMR, a general memory-driven RL frame-
work, to reduce interactions and accelerate convergence
by abstracting key nodes and reconstructing valuable paths
on the memory graph. GBMR enables agents to converge
to the same policy with few interactions.

Based on the earlier contributions, we implement GBMR
to drive an RL agent in a range of environments to verify

its effectiveness. In particular, we first perform some ablation
experiments to validate the rationality of graph memory and
the necessity of graph reconstruction. At the same time, the
effect of different graph reconstruction implementations in dif-
ferent grid mazes will show the flexibility and generality of
GBMR. Afterward, we utilize GBMR with the corresponding
observation embedding network to reveal its superiority over the
baseline algorithm on some challenging Atari games. In addition
to providing essential insights into the GBMR mechanism, our
visualization of the intermediate results shows that GBMR holds
the potential to move toward explainable RL.

II. PRELIMINARY

In the complex and ever-changing world, human beings are
making choices all the time. Rational people seek to respond
optimally to incentives within a limited time. In RL problems,
the agent constantly interacts with the environment and makes
decisions. Existing RL frameworks design corresponding incen-
tives and operating mechanisms, hoping they can think and make
decisions like humans.

Traditional RL algorithms typically assume that the RL prob-
lem is well modeled by an agent interacting with a finite Markov
decision process (MDP) [31]. At each timestamp t, the agent
receives a state st ∈ S and selects an action at ∈ A following
a policy π(at|st), where S represents the state space and A is
the action space. Then, the agent receives a reward rt from the
reward function R(s, a) and transfers to the next state st+1,
according to the environment dynamics model where the state
transition probability is P(st+1|st, at). In an episodic problem,
this process continues until the agent reaches a terminal state.
The episodic problem means that the agent’s task lasts a finite
amount of time, as opposed to the continuous task, which never
ends. The agent can obtain a trajectory with finite-length T for
each episode. Here, we design a discounted, cumulative return
in (1) with the discount factor γ ∈ (0, 1]:

Rt =

T∑
k=0

γkrt+k. (1)

The state–action value qπ(s, a) = E[Rt|st = s, at = a] is the
expected return for selecting an action a in state s following
policy π. Here, we denote the optimal policy as π∗, and the
corresponding state–action value as q∗. In traditional RL, e.g.,
Q-learning [32], the state–action value q is updated by

q(st, at)←q(st, at)+α[rt+1+γmax
a

q(st+1, a)−q(st, at)]
(2)

where α ∈ (0, 1] is the step size. It often requires sufficient
interactions to update the current q toward optimal q∗.

The phenomenon that RL algorithms require many rounds of
interaction with the environments to obtain satisfactory perfor-
mance is often described as sample inefficiency. This problem
is caused by a design defect in RL algorithms. In the traditional
RL formulations, the agent usually saves policy only (or values
that can deduce policy, e.g., Q-table). Therefore, if agents want
to update their policies, they have to do more interactions. How-
ever, humans improve their policies through reasoning without
interaction. The fundamental distinction is that the human brain
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Fig. 1. Graph-based memory for RL and basic operations of memory Reading
and Writing. The nodes with different colors represent different node attributes
(i.e., the features of states). Different colored edges represent different edge
attributes (i.e., value function of state–action pair). The Writing operation is
to write the interaction trajectory into the memory graph, and the same node
represents the same state. Each Writing operation completes the addition of new
nodes or the updating of past edge attributes. The Reading operation is to get
the connected edges (actions) and attributes (state–action values) according to
the memory graph and apply them to the Decision-making process.

has a corresponding storage structure and access mechanism,
which is skilled at remembering events and recalling them to
accomplish new tasks. The agent lacks such a memory structure
that efficiently stores experiences and reconstructs policies.

III. GRAPH-BASED MEMORY

Inspired by the connected form of engrams in neuroscience,
we introduce an attributed graph to provide a new formulation
of the agent’s memory, building a fundamental framework for
policy updating in Section IV. We establish Writing, Reading,
and Decision-making operations on this graph-based memory
to imitate human memory’s access and retrieval, as shown in
Fig. 1. The Writing operation embeds the current events into the
agent’s historical memory, and the Reading operation retrieves
similar events and decisions from memory based on the current
observation. After Reading, the agent applies these reading
results to a Decision-making process, just like humans take
actions according to similar situations in memory.

A. Graph Formulation of the Agent’s Memory

We build a directed attributed graph G = (V, E ,X ,W) to
model the agent’s memory, where each node vi ∈ V corresponds
to a state si, node attributexi ∈ X denotes the featureφ(si) of
state si, edge e(i,j) ∈ E between the nodes vi and vj corresponds
to an actionai taken in statesi that causes the transition tosj , and

TABLE I
NOTATION TABLE OF RL AND GRAPH-BASED RL (GBRL)

edge attribute w(i,j) ∈ W denotes the characteristic of state–
action pair (si, ai, sj), i.e., the state–action value qπ(si, ai). A
path p = {e0, e1, . . . , eK} in the graph corresponds to a policy
sampling with K steps. We denote the reward as a function of
edge r(e(i,j)). The return Rt =

∑K
k=0 γ

kr(ek) evaluates the
value of a sampling path. The corresponding state–action value
under current G is qG(e(i,j)) = E[

∑K
k=0 γ

kr(ek)]. In episodic
RL, we deduce the agent’s current policy π from the whole
graph with edge attributesW . The agent’s goal in RL is to get
an optimal attributed graph G∗, by which the path with the max
cumulative reward can be sampled:

p∗ [vi, vj ] = argmax
pi∈p[vi,vj ]

∑
e(m,n)∈pi

r
(
e(m,n)

)
. (3)

To make the following parts easier to follow, we summarize
these denotations in Table I.

B. Memory Writing and Reading

To update and employ the memory graph, we design its basic
operations, including the memory Writing operation and the
memory Reading operation. Writing is the primary way to grow
and update the graph memory along with the agent’s exploration
process. Reading obtains some similar or associated nodes from
the graph memory. The read-out nodes will be used in the
Decision-making process.

1) Writing: Memory Writing is executed after we get a tra-
jectory. For each pair (si, a, sj) in the current trajectory T , we
transform it into a node–edge–node tuple (vi, e(i,j), vj) in the
graph. Then, we check if the edge e(i,j) exists in the memory
graph Gt−1, where the superscript (t− 1) denotes the result of
iteration at time step (t− 1). If it exists, we update the corre-
sponding node attribute xi and edge attribute w(i,j) according
to the state feature φ(si), φ(sj) and reward r(si, a)

w
(t)
(i,j) ← w

(t−1)
(i,j)

+ η

[
r(si, a) + γ max

vm∈ne[vj ]
w

(t−1)
(j,m) − w

(t−1)
(i,j)

]
(4)
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where η denotes the learning rate, and ne[vj ] denotes neighbors
of vj . Equation (4) is a transformation of (2) under the formu-
lation of the graph-based memory. If the edge does not exist,
we add a new edge e(i,j) to get Gt and transform r(si, a) into
r(e(i,j)). Additionally, we overwrite the least recently used items
when reaching the memory’s maximum capacity.

2) Reading: To make a decision according to experience,
the agent reads the node corresponding to the current state
and the edges connected to that node from the memory graph.
We use a function fread(·) to represent the reading operation.
Typically, it is almost impossible for agents to encounter exactly
the same observation as in the past, especially in continuous state
space. Therefore, the Reading operation resorts to retrieving a
set of similar nodes, and weights their values according to the
similarity when making decisions.

It takes the current state si and the current memory Gt as input
and outputs candidate nodes Ncand and corresponding weights
Pcand

(Ncand,Pcand) = fread
(
si,Gt

)
. (5)

To read similar nodes from the graph, we use different similarity
metrics in different tasks. Here, we take the cosine distance
between the state feature φ(si) and the node attributes xj as
an example

d(i, j) = cos(φ(si), xj) =
φ(si) · xj

|φ(si)||xj | . (6)

We find the indices j1, . . . , jtopk corresponding to the topk largest
values of d(i, j). topk is a hyperparameter that is manually set
in different tasks. For j ∈ {j1, . . . , jtopk}, the more similar they
are, the more weight they will have in later decisions. Thus, the
weight vector ω is computed by

ωjk =
exp(d(i, jk))∑

m=j1,...,jtopk
exp(d(i,m))

. (7)

Candidate nodes and corresponding weights are two outputs of
the reading function fread

Ncand =
{
vj1 , vj2 , . . . , vjtopk

}
(8)

Pcand =
{
ωj1 , ωj2 , . . . , ωjtopk

}
. (9)

3) Decision-Making: After reading out the nodes that are
similar to the current state, the agent will evaluate the value of
each action in the current state based on the weights of the edges
connected to these nodes. For each action a ∈ A, we read its
edge attribute w(vjk

,vmk
) (state–action value) in each candidate

state vjk of the current state st, where vmk
denotes the next state

caused by the action a in the state vjk . We weigh them to get the
value of a in the current state st

q(st, a) =

topk∑
k=1

ωjkw(vjk
,vmk)

. (10)

The agent executes a ε-greedy policy to tradeoff exploration
and exploitation. With probability ε, the agent picks an ac-
tion uniformly at random. Otherwise, it picks the action at =
argmaxa q(st, a).

Although it is a simple greedy algorithm, the values used
for the greedy policy are obtained from multiple similar states,
which improves the stability of the agent’s decision-making
compared with the traditional greedy policy. Furthermore, our
decisions relate not only to the current observation but also to
the observations associated with it.

Graph-based memory simultaneously models the state and
the relationship between them. The Writing and Reading oper-
ations help the agent make decisions when interacting with the
environment. However, if we use it directly in the RL task, the
policy represented by the edge attributes will only be updated
by interacting with the environment, which is inefficient for
sampling. Graph-based memory has provided us with a good
foundation from the data structure perspective. The next problem
is how to make full use of it to complete a more efficient RL
process.

IV. MEMORY RECONSTRUCTION

Based on the graph-based memory introduced in the previous
section, we further propose a GBMR framework to improve
sample efficiency. GBMR imitates the creating process of re-
constructive memory Bartlett discovered in psychology, which
establishes a Reflection process based on interaction. The Inter-
action process proceeds via a memory graph, as mentioned in
Section III while the Reflection process updates the policy on
this graph. By updating the important knowledge (e.g., attribute
weights) on the memory graph with existing information, rather
than interacting with the environment, our method attempts to
reduce unnecessary interactions with the environment and, thus,
increase sample efficiency significantly. To this end, we first
find critical scenes in the past memory and, then, reassemble
existing memory fragments to construct events that are not
previously experienced or require extensive exploration to en-
counter, achieving the inference of the events in the memory
graph without interacting with the environment. Specifically, we
first get an abstract graph containing important states based on
the graph-based memory and, then, reconstruct potential paths
between these states to update the original graph and, finally, get
the optimal policy through continuous iteration.

A. Memory Abstraction

The agent maintains two graph structures to establish the
GBMR mechanism. The first one is the abstract memory graph
H, and the other is the original memory graph G. The abstract
graph retains a memory blueprint consisting of key nodes. We
develop two methods, the key-node-finding (KF) function and
the path-finding (PF) function, to obtain the abstract memory
graphH.

The key node indexes are obtained by Vidx = KF(G,K),
where K is the number of nodes we aim to get in the abstract
memory H. The node features in H come from the original
memory G, i.e., X . When we find the key-node indexes, we do
a mask on XG , that is, XH = XG [Vidx].

1) Candidate Methods forKF (·): Benefiting from the graph
structure memory, we conveniently measure the characteristics
of nodes in the graph. For example, the node’s importance is
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Fig. 2. Memory reconstruction process. The goal of memory reconstruction
in graph-based RL is to update the original graph under the guidance of an
abstract graph. From an original memory graph (a), we first use a KF function
to get the key nodes, which are the basis of the abstract graph (b). From (b) to
(c), we construct paths among these key nodes and apply the function fvalue(·) to
evaluate the value of the paths. After that, the edge attributes on the most valuable
paths (c) (as shown in the dotted line in the figure) are updated to get a new graph
(d) (the changed attributes are marked in red). By reconstructing the memory
graph, we update the agent’s policy without interacting with the environment
[from (a) to (d)]. (a) Memory graph. (b) Abstract graph. (c) Valuable paths.
(d) Reconstructed graph.

measured by its degree. We exploit the sum of in-degree i(v)
and out-degree u(v) as the influence of a node v [33]. The more
influential a state is, the more critical it should be. Here is the
first definition of KF(·)

VH = argmax
v

(i(v) + u(v)). (11)

Another way to define KF(·) is to evaluate the representative
ability of the node attributes. We find the corresponding cluster
centers by clustering the node attributes. The clustering method
can be a simple one, such as K-means, CANOPY [34], or a
complex graph clustering method [35]. Another definition of
KF(·) based on K-means is

VH = K-means (XG ,K) . (12)

There exist many other ways to find the key nodes, such as
the nodes with more rewards or the cross-nodes of trajectories
with more cumulative rewards. In the ablation experiment (see
Section V-A), we compare the effects of different methods in
various environments.

By KF(·) detailed before, we get the most representative or
valuable nodes in the agent’s memory. So far, the edges in the
abstract graph are virtually connected, as shown in Fig. 2(b),
and we will give them more practical meanings in the path
reconstructing process.

B. Path Reconstruction

The set of paths among key nodes vi and vj is noted as
p[vi, vj ], where vi, vj ∈ VH. We evaluate the most valuable path

p∗[vi, vj ] by function

p∗ [vi, vj ] = argmax
pi∈p[vi,vj ]

fvalue(pi). (13)

The paths obtained here may not be actual trajectories, and
most of them are fragments of trajectories or combinations of
fragments. They are inferences about paths that may not occur,
which allows the agent to improve the policy without interacting
with the environment.

1) Candidate Methods for fvalue(·): There are usually differ-
ent methods to evaluate the value of a path fvalue(p) according to
the tasks agent faced, such as the cumulative rewards, number
of nodes, or the node entropy.

Cumulative rewards are the most straightforward way to
evaluate the path in the RL problem

fvalue(p) =
∑

e(i,j))∈p
r
(
e(i,j)

)
. (14)

In some environments with a fixed structure, the shortest path
may be another more effective way of evaluating value

fvalue(p) = 1/ length (p [vi, vj ]) . (15)

The Dijkstra algorithm [36] can be used to find the shortest path
between two key nodes quickly in graph-based memory.

The entropy of nodes may be helpful in an environment with
sparse rewards. We can evaluate the value of the path by the
entropy of nodes in this path

fvalue(p) = −
∑
vi∈p

P (vi) logP (vi) (16)

where P (vi) denote the probability distribution of node vi.
We use these most valuable paths as virtual graphs to update

our memory without interacting with the environment. In other
words, the attributes of the corresponding edge of the path
are updated to affect the decision-making process in the next
iteration while keeping the node and association unchanged.
Because nodes are sampled from the graph memory G, they are
all valid states and actions. This result fits our intuition because
people will never have episodic memory of things that have not
happened.

We update edges directly by

w
(t)
(i,j) ← w

(t−1)
(i,j) +η

[
r(e(i,j))+γ max

vm∈ne[vj ]
w

(t−1)
(j,m) − w

(t−1)
(i,j)

]
.

(17)
It is worth noting that the reward here is about an edge e(i,j)
in memory instead of a new interaction state si. Compared to
(4), the policy update in (17) does not consume any interaction
resources but has a positive impact on decisions.

C. GBMR-Driven RL

Overall, the GBMR includes two parts, Interaction and Re-
flection, as shown in Algorithm 1. Interaction refers to the
agent obtaining practical trajectory T = {s1, . . . , si, . . .} from
the environment according to the old memory Gt, and Reflection
reconstructs the memoryGt+1 in the agent’s mind after obtaining
the trajectory T .
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Algorithm 1: Graph-Based Memory Reconstruction
(GBMR).

1: Initialize empty memory graph G0.
2: while t < MaxEpisode do
3: Initialize environment.
4: while i < MaxStep do � Interaction
5: Receive state si from environment with feature φ(si)
6: Read candidate states (Ncand,Pcand) = fread(si,Gt)
7: Calculate q(si, a) according to (10)
8: at ← ε− greedy exploration by q(si, a)
9: Take action at, receive reward rt+1, and si+1

10: si = si+1 and i = i+ 1
11: end while
12: Write the current record T into Gt. � Reflection
13: Get abstract graphHt from Gt by KF (·).
14: Get the valuable path p∗[vi, vj ] by fvalue(·).
15: Update the edges’ attributes in Gt to get Gt+1:
16: w

(t)
(i,j) ← w

(t−1)
(i,j) + η[r(e(i,j)) + γ max

vm∈ne[vj ]

w
(t−1)
(j,m) − w

(t−1)
(i,j) ].

17: t = t+ 1
18: end while

1) Interaction: During the Interaction process, we first con-
vert the state to a node by reading similar nodes of the current
state si from the current memory graph Gt by fread(·). Subse-
quently, we use the reading results (Ncand,Pcand) to calculate the
state–action value q(si, a) of each a ∈ A by (10). Finally, we
take action by ε-greedy exploration based on these state–action
values. The environment will return the next state si+1 and
reward ri+1.

2) Reflection: After getting a trajectory from the environ-
ment, we write it into the graph memory Gt. To get an abstract
graphHt, we use KF (·) to get key nodes, and fvalue(·) to get a
valuable path from Gt. Then, we reconstruct the memory graph
Gt under the guidance of the abstract graphHt by updating the
attributes of corresponding edges. The new memory graph Gt+1

will be used in the decision-making process in the subsequent
Interaction.

A major advantage of memory reconstruction is that there are
some reconstructed paths that may have occurred and some that
have not actually occurred. Therefore, the policy is updated with-
out interacting with the environment, which improves sample
efficiency. Another advantage is that the reconstruction is carried
out among key nodes, and the key nodes are representative of
their neighbors, which improves the utilization of samples. With
a graph-based data structure, the process of memory reconstruc-
tion is a depth-first propagation of information, which enables
the information of key nodes to rapidly spread to the entire graph.
Combined with the breadth-first search in the Reading process,
the agent quickly updates the policy in memory.

Another important detail is that we use original nodes in G,
which ensures that all the reconstruction paths are possible in
reality (but not necessarily already happening due to the low
number of interactions). This detail ensures that the agent’s

Fig. 3. (a) Grid maze is a 10 × 10 maze with random holes and a reward in
the bottom right corner. (b) Performance comparison of GBMR, graph-based
RL (GBRL), Dyna-Q, and Q-learning.

reasoning is reliable and that the reasoning results can be directly
applied to actual decision-making. We will further detail the
GBMR framework through the experiment section and verify the
effectiveness and efficiency of GBMR through the experiment
results.

V. EXPERIMENTAL EVALUATIONS

In this part, we describe the experimental results of the GBMR
in different games. First, ablation experiments illustrate the
feasibility of graph-based memory and the roles of various
candidates in the memory reconstruction process. Then, appli-
cations in video games verify that GBMR is a sample-efficient
framework. At last, we explain why GBMR is effective by
presenting and analyzing intermediate results.

A. Ablation Studies

We provide extensive analyses of the GBMR learning frame-
work via ablation studies from two aspects. On the one hand, to
show the effectiveness of graph-based memory in Section III and
memory reconstruction in Section IV, we compare GBMR with
the basic RL method and RL method with graph-based memory
(GBRL). On the other hand, we test different attempts to get
key nodes and construct the most valuable path in Section IV
and perform ablation experiments on different combinations to
illustrate their usability.

1) Environment Settings: We first test our model on the
MiniMaze to verify GBMRs effectiveness and understand its
different candidate functions. The structure of the environment
is constructed by rending several impassable black holes, and all
states in the environment have no reward except the yellow circle
in the bottom-right corner. If the agent enters the yellow circle,
then the Maze Environment will feedback a positive reward,
e.g., +200, whereas entering any other state results in a reward
of 0. When the agent hits a maze boundary or obstacle, it will
stand still at the last state with no reward. The state space is
regarded as a limited discrete one without reward. An agent
starts from the beginning state in the top-left corner shown in
Fig. 3(a). The action space is {“left”, “right”, “up”, “down”}
and is limited by the walls and holes. The maximum number
of interactions is set as 200 to ensure that this is an episodic
RL setting.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:00:20 UTC from IEEE Xplore.  Restrictions apply. 



KANG et al.: SAMPLE EFFICIENT REINFORCEMENT LEARNING USING GRAPH-BASED MEMORY RECONSTRUCTION 757

TABLE II
NOTATION OF CANDIDATE METHODS IN GBMR

Since we take the discrete location as the node feature φ(s),
the read and write operations are precisely addressed without any
approximation. In other words, we set topk in (10) as topk = 1.
This setting allows us to focus more on the role of memory
reconstruction, ignoring the effects of other details.

2) Effectiveness of the Graph-Based Memory and Memory
Reconstruction: We compare the original Q-learning algorithm
with a Dyna-Q [31], “Q-learning+ graph memory” (GBRL) and
“Q-learning + graph memory + memory reconstruction” (the
whole GBMR framework) to verify the effectiveness of these
two components. Fig. 3(b) shows their performances.

Compared to the Q-learning algorithm (the green curve),
GBRL (the purple curve) gets slightly better experimental results
within a similar average number of steps. This result shows that
introducing the graph structure into the agent’s memory does
not influence the agent’s policy learning, which validates further
ablation study on the memory reconstruction.

Based on our graph structure, we further add the memory
abstracting and path reconstruction modules to examine the
whole GBMR framework (the pink curve). Compared with the
model-based methods (e.g., Dyna-Q), which hold an estima-
tion of the world model (or state transition probability), our
GBMR framework reconstructs both the states’ relationship in
the environment and the policy of agent. In the experiment
results, compared with the purple (GBRL) and orange (Dyna-Q)
curves, the pink (GBMR) curve shows that the introduction
of memory reconstruction dramatically reduces the interactions
and improves the sample efficiency.

We use K-means (12) method to get representative key nodes
and the shortest-path (15) method to get the reconstructive path
in this experiment. The choices of these KF and PF algorithms
are discussed in detail next.

3) Studies on KF and PF: There are many options for finding
key nodes (11)–(12) and performing path evaluation (14)–(16).
The following studies present their influence on different kinds
of environments. We use abbreviations in Table II for clear
representation. Taking GBMR-KS as an example, it means we
use the clustering algorithm K-means (K) to get representative
key nodes and the reconstructed path is the shortest path (S)
among the paths.

GBMR allows different ways to update the weights in the
memory graph. Fig. 4 shows some of the KF and PF candidates.
This visualization of the GBMR learning process gives our
framework an intuitive understanding. Fig. 4(c) and (d) shows
abstract graphs found by two different KF functions from the

Fig. 4. (a) Grid maze. (b) Agent’s memory graph before the reconstruction
process. (c) and (d) Two different ways to find the key nodes. The red nodes
are the nodes of the abstract graphs. (e)–(g) Three different methods of path
reconstruction, and they get different reconstruction paths for the same set of key
nodes. The weight on the reconstruction path will be updated without interaction.
(h) Reconstructed graph after using one of the six combinations of key-nodes-
finding methods and valuable path-finding methods.

same original memory graph in Fig. 4(b). The key nodes ob-
tained by degree-of-nodes (D) usually appear at the intersection
of many paths, whereas the key nodes obtained by the feature
clustering method (K) are approximately uniformly distributed
in the state space. Fig. 4(e)–(g) shows paths reconstructed by
different fvalue(·) from Fig. 4(d). As we can see from the three
kinds of reconstruction paths, the F -value by cumulative re-
wards (C) usually allows more edges to have the opportunity
to be updated. Fig. 4(h) shows the reconstructed graph from
Fig. 4(e). The highlighted blue box in this reconstructed graph
shows the updated edge attributes.

To study the different efficiency of these candidates, we give
an example of grid mazes of three basic types. The first one is
an empty environment with no structure (unrestricted movement
of agent), and the second one is an environment with apparent
structure (restricted movement of agent), both of which have no
reward in the black hole. We can call them the sparse reward
environment. The third one is a grid maze that has the same
structure as the second one. The difference is that the black hole
has negative rewards.

On the whole, GBMR converges to the optimal policy faster
than Q-learning. Different ways to find the key nodes and
reconstruct paths will lead to different performances. In the
empty grid maze [see Fig. 5(a)], the performance of GBMR-KS
and GBMR-KC is slightly better than other combinations, but
the difference is not much [see Fig. 5(d)]. In the structured
grid maze [see Fig. 5(b)], Q-learning cannot solve the problem
in a limited number of steps. However, our GBMR-DS and
GBMR-DC perform well [see Fig. 5(e)]. In the dense reward
grid maze [see Fig. 5(c)], GBMR-KS and GBMR-DS perform
better than others [see Fig. 5(f)].

By comparing the empty grid maze [see Fig. 5(a)] and the
structured grid maze [see Fig. 5(b)], results show that for the
environment with structure, the key nodes found by degree
(GBMR-DS and GBMR-DC) are more conducive to the al-
gorithm to play its advantages. Through the comparison of
the sparse reward environment [see Fig. 5(b)] and the dense
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Fig. 5. (a)–(c) Three different grid maze with random holes. (a) Empty maze
with only one positive reward at the bottom right corner. (b) Structured maze
where the black squares cannot be crossed, so that the empty environment has
structural information. However, black squares in both (a) and (b) have no
rewards. They are both sparse reward environments. (c) Structured, dense reward
environment where the black square has negative rewards. (d)–(f) Average
rewards in each step are reported by five random seeds, and we limit steps to
10 000 steps. The performance of six combinations (GBMR-KC, GBMR-KS,
GBMR-KE, GBMR-DC, GBMR-DS, GBMR-DE) is compared with the basic
Q-learning algorithm. (a) Empty maze. (b) Structured maze. (c) Dense reward.
(d) Rewards in (a). (e) Rewards in (b). (f) Rewards in (c).

reward grid maze [see Fig. 5(c)], reconstructing path by short-
est path (GBMR-KS and GBMR-DS) and cumulative reward
(GBMR-KC and GBMR-DC) both perform well, but in an
environment with both dense reward and structured information
[see Fig. 5(c)], reconstructing by the shortest path will be better.

B. Comparative Studies in Video Games

To further evaluate the sample efficiency of GBMR and
applicability, we conduct experiments on Atari games from the
arcade learning environment (ALE [37]), which provides various
scenarios to test the RL algorithms under different settings.
Some of them are shown in Fig. 7.

In Ms.Pac-Man, rewards are obtained by eating pellets while
avoiding ghosts (contact with one causes Ms.Pac-Man to lose
a life). Eating one of the unique power pellets turns the ghosts
blue for a small duration, allowing them to be eaten for extra
rewards. Bonus fruits can be eaten for further rewards, twice per
level. When all pellets have been eaten, a new level is started.
There are four different maps and seven different fruit types,
each with a different reward value.

Here, we take another three examples, Alien, Amidar, and
Bankheist. They both involve controlling a character, where
there is an easy way to collect small rewards by collecting
items of which there are plenty while avoiding enemies. On
the other hand, the agent can pick up a particular item making
enemies vulnerable, allowing the agent to attack them and get
significantly larger rewards than collecting the small rewards.

We cannot take the agent’s position as a feature in Atari games.
There are two reasons: 1) The state in Atari games is a picture,
where the position is not direct information. 2) The games we
use have moving enemies. The relative relationships between
enemies and agents play a crucial role in scores. It is impossible

TABLE III
HIGHEST SCORES EVER ACHIEVED IN ATARI GAMES (MAX FIVE MILLIONS

STEPS)

to accomplish the task with only the position of the agent as a
feature. Therefore, we need a neural network to process video
into embedding features for node attributes. The embedding
network could be a random projection or parameter network
trained with the process of Interaction. An episodic RL method,
NEC [28], which contains slowly changing state representations
and rapidly updated estimates of the value function, is suitable
for our framework. We take its embedding network to get state
features for our graph memory, which is shown in Fig. 6.

Excluding the way to get state features, the whole framework
will be the same as GBMR mentioned before. To test the sample
efficiency of our method, we compare GBMR with GBRL
(GBMR without memory reconstruction) and NEC [28]. GBRL
is used to verify the availability of graph-based memory, whereas
NEC is used as a baseline for comparison. Since the embedding
part is not the focus of this article, we essentially set up the same
embedding network architectures and hyperparameter with NEC
(also the same as DQN [1]).

Specifically, we store up to 5 × 105 nodes in the memory
graph. While doing Interaction, the Reading process performs
an approximate nearest neighbors algorithm based upon kd-
trees [38], where the topk = 50 in (7), and the writing process
update edge weights with learning rate η = 0.01. In the Reflec-
tion part, we use cross nodes of trajectories with more cumulative
rewards as key nodes and apply the shortest-path (15) to get the
valuable path among these nodes.

Fig. 7 compares the training process and results in four video
games. The left column is the image extracted from each video,
and the right column is the corresponding experimental results.
It can be seen from the mean score in the right column that 1)
GBRL gets almost the same performance as NEC, and 2) GBMR
works better than them.

From the analogous results obtained in GBRL and NEC, we
draw similar conclusions as the ablation experiments, that is,
the basic idea of introducing an attributed graph into the agent’s
memory to remember historical events and make decisions is
practicable. Based on this result, we observe that GBMR has
achieved further improvements. By comparing the red curve
with the other two, GBMR gets an identical score in fewer
interaction steps in each game. It reveals that we accelerate the
convergence speed of the RL learning process by introducing
the memory reconstruction process.

In addition to the comparison of the average scores and
their ranges in Fig. 7, we compare the highest scores that each
algorithm can get in five million steps, as shown in Table III,
where the significance of boldface values is the best performance
of different algorithms. The highlighted results in Table III show
that the best policies ever obtained by GBMR are not necessarily
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Fig. 6. Embedding network in Atari games. Pictures representing the current state s enter through an embedding network, which contains three convolutional
neural networks and a fully connected neural network. After getting embedding φ(s), we read k most similar state {s1, s2, . . . , sk} and its corresponding q-values
{q1, q2, . . . , qk}. Then, a trainable weight w is used to obtain the final q-values Q(s, a).

Fig. 7. Comparisons among NEC, GBRL, and GBMR. The x-axis is the
number of interaction steps (×1e4) with the corresponding environment, and the
y-axis is the average score in each game. The solid line in the result graph is the
mean score of five random experiments for each algorithm, and the shaded area
is the range formed by their maximum and minimum rewards. (a) Mspacman.
(b) Mspacman. (c) Alien. (d) Alien. (e) Amidar. (f) Amidar. (g) BankHeist.
(h) BankHeist.

Fig. 8. Effect of the number of nearest neighbors, topk , on the final results. To
facilitate fair comparison among each game, we ignore the value of the reward.
The y-axis represents the maximum reward times per episode that an agent get
in 1 million steps under topk = 30 and topk = 50.

better than those by GBRL. However, combined with the results
in Fig. 7, we can see that the average policy of GBMR is more
stable than that of GBRL, which further indicates that GBMR
stabilizes the distribution of policies through the process of
reflection.

To differentiate our GBMR from model-based approaches, we
pull the results of these four games mentioned above from Sim-
PLe [25] (which is reported in four million steps), 616.9 (Alien),
1480.0 (MsPacman), 74.3 (Amidar), and 34.2 (Bankheist). The
model-based method has some improvement over the traditional
model-free method, but the progress of our approach is more pro-
nounced. Another related work is TPG [39]. TPG reported their
results in 50 million steps as 3382.7 (Alien), 5156.0 (MsPac-
man), 389.4 (Amidar), and 1051.0 (Bankheist). It achieved this
with 50 million steps while we achieved comparable results
using only five million training steps.

We also compare the effect of varying topk on four games in
Fig. 8. In the results of the experiments, we noticed that agents
yield a higher score on these Atari games as the number of neigh-
bors grows. At the same time, the variance of multiple results
also decreases with the increase of the number of neighbors, in-
dicating that more neighbors bring out more stable performance
for GBMR. However, more neighbors will cost more computing
resources. Considering the balance of computing resources and
experimental effects, we chose topk = 50 when reporting the
results in Fig. 7.

Our framework is more suitable for tasks with obvious struc-
ture information and particular meanings of key nodes. However,
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Fig. 9. Reconstruction process in Ms.Pac-Man. We first do key node finding
to get key nodes shown in 1©– 7©. When we reconstruct paths between the key
nodes, 8© shows a path that may exist in the process of reflection but has not
yet happened in actual interaction. By updating the edge weight on this kind of
path, we are more likely to get a more reasonable policy with less interaction.

the extraction of key nodes and the path reconstruction between
key nodes have no practical meaning in environments with no
moving track, such as Pong and Bowling, so GBMR does not
significantly improve the traditional algorithm’s performances
in those games.

C. Analysis of Intermediate Results

The demonstration of the intermediate results visualizes the
reason why memory reconstruction can get a policy (or memory
graph) updates with less interaction. The nodes visualized in the
purple background ( 1©, 2©, 3© in Fig. 9), the orange background
( 4©, 5©), and the blue background ( 6©, 7©) are key nodes in
three trajectories, respectively. When we do reconstruction in
the agent’s memory, the path visualized in the red line ( 8© in
Fig. 9) will be reconstructed, and the edges’ attributes along
the path will be updated. It is worth mentioning that this red
path may require extensive exploration to encounter. However,
GBMR updates this vital path in the graph memory without any
interaction with the environment. The updating process is similar
to people’s reasoning about past events in their memory. People
infer the results of various possible combinations of events,
not limited to events that have occurred. In RL with GBMR,
this process will optimize policy through fewer interactions and
improve sample efficiency.

At the same time, the results in Fig. 9 show that graph-based
RL combines the parametric method (networks for embedding)
and the nonparametric method (graph-based policy updating).
The nonparametric part makes the whole process of RL more
explicable than just using the parametric part. We can intuitively
see the mechanism of RL by visualizing the memory graph,
which provides a good reference for the further study of ex-
plainable RL.

VI. RELATED WORK AND DISCUSSION

Although there is no standard formal description of memory
in previous RL, some existing algorithms, such as the ER and

episodic RL, introduce historical information to address the
horizon limitation of MDP modeling for the agent.

1) Model-Free RL and Model-Based RL: Model-free RL
algorithms, such as DQN [1], PPO [40], have been hugely suc-
cessful with Atari games. However, model-free RL algorithms
often require more interactive data than human players. The
reason is that human players can easily story their experiences
and reuse their policies. World models use VAE to learn a latent
representation of observation and use long-short term memory
(LSTM) to model the transition process in latent space [25],
[26]. They offer a straightforward way to represent an agent’s
knowledge about the world in a parametric model that makes
predictions about the future [26]. These works improve policy
by interacting with the world model and applying it to the
actual environment. However, the model-based RL will face the
problem of inaccurate prediction. Therefore, GBMR does not
attempt to predict the environment’s future. It only reorganizes
experiences, including the states that have been observed and
the policies that have been adopted. Then, we update the policy
through memory reconstruction on the attributed graph, which
covers the longer timescales.

2) ER and Episodic RL: Actor–critic RL algorithms such
as A2C/A3C [2] and PPO [40] are known for their sampling
inefficiency. The success of DQN [1] and its variations [41], [42]
owe much to the usage of ER buffer. Prioritized ER (PER) [23]
improves the sample efficiency by prioritizing experiences based
on TD-errors. It is a stochastic sampling method that interpo-
lates between pure greedy prioritization and uniform random
sampling, which gives different weights to transition tuples with
TD-errors. The replay buffer can be regarded as some form of
memory. In another way, Hindsight methods [24], [43], [44]
encourage the agent to learn from the states it has encoun-
tered. Episodic RL methods, such as [27], [28], [29], store
good experiences in a tabular-based nonparametric memory and
rapidly latch onto past successful policies when encountering
similar states [45], [46], [47], [48]. To address the continu-
ous state problem, EMAC [45] proposed algorithm combines
episodic memory with actor–critic architecture by modifying
critic’s objective and GEM [46] organizes the state–action values
of episodic memory in a generalizable manner and supports
implicit planning on memorized trajectories. When estimating
Q-value, researchers propose an associative memory graph as
guidance for a value network with a certain frequency [30].
However, graph memory should not be just an auxiliary value
but be constructed for decision-making.

In GBMR, we store the events we have experienced and the
policy we have adopted in the form of an attributed graph. The
graph structure stores not only the attributes of each state but
also stores association relationships, which provides a basis for
efficient and diverse reconstruction.

3) Graph-Based Methods and Evolutionary Methods:
Since the graph is an expressive data structure, many fields use
it as the basis of algorithms. DRL+GNN [49] combines graph
neural networks (GNNs) with RL and applies them to routing
optimization problems. When faced with a high-dimensional
state, it usually faces the problem of slow iteration. GNP [50]
and TPG [39] try to solve the problem from the perspective
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of an evolutionary algorithm and genetic programming. In this
article, we model the RL process as an information propagation
in the graph structure. And we hand over the high-dimensional
encoding part to the trainable convolutional network. Then, the
two form an end-to-end learning structure.

4) Other Perspectives on GBMR: The abstract and recon-
struction process of GBMR is not only inspired by the mecha-
nism of human brain memory reconstruction but also takes into
account the particularity of RL. We treat the state space that
has been explored as a memory graph and RL as a problem of
searching the optimal path in the memory graph. The process
of a similar node search on the memory graph is to conduct a
range of breadth-first searches. The reconstruction of the key
node path is essentially the propagation of information, but it
is a depth-first propagation along the valuable path. Therefore,
GBMR realizes the strategy combination of breadth-first search
and depth-first search.

VII. CONCLUSION AND FUTURE WORK

This article has argued that memory reconstruction in graph-
based memory improves the sample efficiency of RL algorithms.
The experiment analyses support the idea that the memory
stored in the form of an attributed graph is well integrated
with the RL process, and the memory reconstruction improves
the sample efficiency while ensuring the effectiveness of the
learning results. Humans have the ability to reason based on
memory due to their unique brain structure. GBMR has designed
a similar storage structure and basic reconstruction framework
for agents. We have verified its feasibility and efficiency through
experiments. These studies try to provide some understanding
of the mechanism of humanlike artificial intelligence in solving
hard-exploration problems.

This work permits further improvements in several direc-
tions. For example, if we use GNN in the abstract process,
our GBMR can thus learn the abstract memory in a data-driven
manner. Therefore, exploiting more powerful GNN models (e.g.,
k-GNN [51]) to improve performance will be interesting future
directions.
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