
14618 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

OpenHoldem: A Benchmark for Large-Scale
Imperfect-Information Game Research

Kai Li , Member, IEEE, Hang Xu , Enmin Zhao, Zhe Wu , and Junliang Xing , Senior Member, IEEE

Abstract— Owing to the unremitting efforts from a few insti-
tutes, researchers have recently made significant progress in
designing superhuman artificial intelligence (AI) in no-limit Texas
hold’em (NLTH), the primary testbed for large-scale imperfect-
information game research. However, it remains challenging for
new researchers to study this problem since there are no stan-
dard benchmarks for comparing with existing methods, which
hinders further developments in this research area. This work
presents OpenHoldem, an integrated benchmark for large-scale
imperfect-information game research using NLTH. OpenHoldem
makes three main contributions to this research direction:
1) a standardized evaluation protocol for thoroughly evaluating
different NLTH AIs; 2) four publicly available strong baselines
for NLTH AI; and 3) an online testing platform with easy-
to-use APIs for public NLTH AI evaluation. We will publicly
release OpenHoldem and hope it facilitates further studies on
the unsolved theoretical and computational issues in this area
and cultivates crucial research problems like opponent modeling
and human–computer interactive learning.

Index Terms— Artificial intelligence (AI), benchmark,
imperfect-information game, Nash equilibrium, no-limit Texas
hold’em (NLTH).

I. INTRODUCTION

FROM its inception, artificial intelligence (AI) research has
been focusing on building agents that can play games

like humans. Both Turing and Shannon developed programs
for playing chess to validate initial ideas in AI. For more
than half a century, games have continued to be AI testbeds
for novel ideas, and the resulting achievements have marked
important milestones in the history of AI [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18]. Notable examples include Deep Blue beating
Kasparov in chess [1], and AlphaGo defeating Lee Sedol [3]

Manuscript received 13 December 2021; revised 20 June 2022, 29 July
2022, 29 November 2022, and 26 December 2022; accepted 23 May 2023.
Date of publication 14 June 2023; date of current version 8 October 2024. This
work was supported in part by the National Key Research and Development
Program of China under Grant 2022ZD0116401; in part by the Natural
Science Foundation of China under Grant 62076238, Grant 62222606, and
Grant 61902402; in part by the China Computer Federation (CCF)-Tencent
Open Fund; and in part by the Strategic Priority Research Program of the
Chinese Academy of Sciences under Grant XDA27000000. (Kai Li, Hang Xu,
Enmin Zhao, and Zhe Wu contributed equally to this work.) (Corresponding
author: Junliang Xing.)

Kai Li, Hang Xu, Enmin Zhao, and Zhe Wu are with the Institute
of Automation, Chinese Academy of Sciences, Beijing 100190, China,
and also with the School of Artificial Intelligence, University of Chinese
Academy of Sciences, Beijing 100049, China (e-mail: kai.li@ia.ac.cn;
xuhang2020@ia.ac.cn; zhaoenmin2018@ia.ac.cn; wuzhe2019@ia.ac.cn).

Junliang Xing is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China (e-mail: jlxing@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TNNLS.2023.3280186

in the complex ancient Chinese game Go. Although substantial
progress has been made in solving these large-scale perfect-
information games that all players know the exact state of
the game at every decision point, it remains challenging to
solve large-scale imperfect-information games that require
reasoning under the uncertainty about the opponents’ hidden
information. Our work focuses on learning agents that can
make good decisions in imperfect-information games. Why is
solving imperfect-information games important for the neural
network and learning system community? Because lots of real-
world decision-making problems we care about are instances
of imperfect-information games. Specifically, real-world inter-
actions, from rock-paper-scissors to business negotiations to
diplomacy, involve some amount of hidden information, mak-
ing research on techniques for imperfect-information games
theoretically and practically significant.

Poker has a long history as a challenging problem for
developing algorithms that deal with hidden information [19],
[20]. The poker game involves all players being dealt with
some private cards visible only to themselves, with play-
ers taking structured turns making bets, calling opponents’
bets, or folding. As one of the most popular global card
games, poker has played an essential role in developing
general-purpose techniques for imperfect-information games.
In particular, no-limit Texas hold’em (NLTH), the world’s
most popular form of poker, has been the primary testbed
for imperfect-information game research for decades because
of its large-scale decision space and strategic complexity.
For example, heads-up NLTH (HUNL), the smallest variant
of NLTH, has 10161 decision points [21], making it almost
impossible to solve directly.

There have been many efforts to design poker AIs for NLTH
over the past few years [22], [23]. Most of these systems
exploit some equilibrium-finding algorithms, e.g., counterfac-
tual regret minimization (CFR) [24], with various abstraction
strategies to merge similar game states to reduce the size of the
game tree. Recently, a series of breakthroughs have been made
in the NLTH AI research community. DeepStack [14], which
combines the continual resolving and the depth-limited sparse
look-ahead algorithms, defeated ten out of 11 professional
poker players by a statistically significant margin. Libra-
tus [15] defeated a team of four top HUNL-specialist profes-
sionals by using a nested safe subgame solving algorithm with
an extensible blueprint strategy. Pluribus [25] defeated elite
human professional players in six-player NLTH by extending
the techniques behind Libratus.

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3840-3270
https://orcid.org/0000-0001-5580-0062
https://orcid.org/0009-0006-5043-5004
https://orcid.org/0000-0001-6801-0510

LI et al.: OpenHoldem: A BENCHMARK FOR LARGE-SCALE IMPERFECT-INFORMATION GAME RESEARCH 14619

Although many important milestones have been achieved
in NLTH AI research in recent years, the problem is far
from being solved, and many theoretical and computational
issues remain to be addressed. For example, the game-theoretic
solution for multiplayer NLTH, the best way to game tree
abstraction, more efficient equilibrium-finding algorithms that
converge faster and consume fewer resources, etc. To solve
these challenges, further studies are urgently needed. However,
one main obstacle to further research in NLTH AI is the lack
of standard benchmarks. First, there are no standard evaluation
protocols in this community; different papers use different
evaluation metrics, making comparisons of different methods
difficult. Second, no publicly available baseline AI can serve
as a starting point for future improvements. Third, there are
no public easy-to-use platforms for researchers to test the
performance of their AIs at any time.

Considering the important role of standard benchmarks in
AI development, we present OpenHoldem, the first benchmark
for NLTH AI research developed to boost the studies on large-
scale imperfect-information games. OpenHoldem provides an
integrated benchmark for evaluating NLTH AIs with three
main components: the evaluation protocols, the baseline AIs,
and a testing platform. For each component, we have made
the following contributions to the community.

1) Comprehensive Evaluation Protocols: Due to the large
variance in imperfect-information games, evaluating the
algorithms’ performance is challenging. We propose
using two variance reduction techniques to alleviate the
effects of randomness and ensure statistically significant
results. We also propose using two exploitability based
evaluation metrics to estimate an algorithm’s worst case
performance by efficiently calculating its approximate
best response. Using these two kinds of evaluation
metrics, we can comprehensively test the capabilities and
deficiencies of an algorithm.

2) Strong Baseline AIs: Although significant progress has
recently been made in large-scale imperfect information
game research, almost all of these AIs are not publicly
available. This situation makes it very challenging for
new researchers to study this problem since designing
and implementing a decent AI is often very complicated
and tedious. To fill this gap, we propose four different
types of NLTH AIs, i.e., rule-based AIs, a CFR-based
static AI, a DeepStack-like online AI and a novel deep
reinforcement learning (RL) based AI, which are rich
and strong enough to serve as a good starting point for
future research in this area. In particular, the RL-based
AI is the first AI that obtains competitive performance
solely through RL-based self-play and is more than a
thousand times faster than state-of-the-art AIs.

3) Online Testing Platform: To compare different AIs more
easily, we further propose an online testing platform
for standardized model evaluation with all the baseline
AIs built in. Researchers can link their AIs to this
platform through easy-to-use APIs to play against each
other for mutual improvement. This platform can serve
as an AI zoo for the research community. Meanwhile,
the accumulated data can also facilitate the research of

data-driven imperfect-information game solving, imita-
tion learning, and opponent modeling algorithms.

In summary, OpenHoldem makes systematic contributions
to the imperfect-information game research community in
terms of evaluation, algorithm, and platform. The adopted
approach, namely to propose an evaluation protocol via several
metrics, the provision of baselines tested to have strong perfor-
mances, and the establishment of an online testing platform,
facilitates algorithm improvements and comparisons with the
state-of-the-arts, which is impossible to do today without
spending much time reimplementing other people’s methods.
OpenHoldem addresses the challenges of designing learning
systems in imperfect-information games. It can potentially
significantly impact poker AI research and, more generally,
the AI community dealing with decision-making problems
under uncertainty. Although we use the imperfect-information
poker game as the primary testbed, the techniques we devel-
oped are largely domain independent and can be applied to
many real-world strategic interactions. We hope OpenHoldem
makes NLTH AI research easier and more accessible, and
further facilitates the research of other problems in imperfect-
information games, such as opponent modeling, which is also
an important research topic in the neural network and learning
system community [26], [27].

II. RELATED WORK

Standard benchmarks have played an indispensable role in
promoting the research in many AI tasks like speech recog-
nition, computer vision, and natural language processing. For
example, in the task of speech-to-text, the NIST Switchboard
benchmark [28] helps reduce the word error rate from 19.3%
in 2000 to 5.5% in 2017; In the task of image classification,
the creation of the ImageNet [29] benchmark has helped in
the development of highly efficient models which reduce the
image classification error rate from 26.2% down to 1.8%; In
the task of machine translation, the WMT benchmark helps the
machine translation system achieve human-level performance
on the Chinese to English translation task [30]. These bench-
marks that have greatly influenced the research communities
have some common characteristics: clear evaluation metrics,
rich baseline models, and convenient online testing platforms.
Motivated by this, we propose the OpenHoldem benchmark
that meets the above requirements to facilitate the future
development of general-purpose techniques for large-scale
imperfect-information games.

There are already some benchmarks on game AI. Exam-
ples include the Atari environments in OpenAI Gym [31],
ViZDoom [32], and MineRL [33], but most of these bench-
marks are oriented toward the research of RL algorithms.
Recently, some benchmarks for game theory research have
been proposed. For example, DeepMind releases the Open-
Spiel [34] benchmark, which contains a collection of envi-
ronments and algorithms for research in n-player zero-sum
and general-sum games. Although OpenSpiel implements
different kinds of games and state-of-the-art algorithms,
it currently does not provide high-performance NLTH AIs.
RLCard [35] developed by Texas A&M University includes
many large-scale complex card games, such as Dou Dizhu,

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

14620 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

Mahjong, and NLTH. However, most of the implemented base-
line AIs are relatively weak. In contrast, the proposed Open-
Holdem benchmark contains very strong baseline AIs, which
can serve as a better starting point for future improvements.

Texas Hold’em, the primary testbed for imperfect informa-
tion game research, has been studied in the computer poker
community for years [20]. The earliest Texas Hold’em AIs
are rule-based systems that consist of a collection of if-then
rules written by human experts. For example, the early agents
(e.g., Loki [36]) produced by the University of Alberta are
mostly based on carefully designed rules. While the rule-based
approach provides a simple framework for implementing
Texas Hold’em AIs, the resulting handcrafted strategies are
easily exploitable by observant opponents. Since 2006, the
Annual Computer Poker Competition (ACPC) [37] has greatly
facilitated poker AI development, and many game-theoretic
Texas Hold’em AIs are proposed [22], [23]. These systems
first use various abstraction strategies [38], [39] to merge
similar game states to reduce the game size, then exploit some
equilibrium-finding algorithms (e.g., CFR [24] and its various
variants [40], [41], [42], [43]) to find the approximate Nash
equilibrium strategies which are robust to different opponents.

Recently, the research on these game-theoretic approaches
has made significant breakthroughs. Examples include Deep-
Stack [14] proposed by the University of Alberta that defeats
professional poker players by a large margin, Libratus [15]
from the Carnegie Mellon University that decisively defeats
four top HUNL-specialist professionals, and Pluribus [25]
as a direct descendant of Libratus that defeats elite human
professional players in six-player NLTH. Nevertheless, almost
all of these Texas Hold’em AIs are not publicly available,
making it challenging for new researchers to study this prob-
lem further. Our OpenHoldem is the first open benchmark
with publicly available strong baseline AIs for large-scale
imperfect-information game research.

III. PRELIMINARIES

Here, we present some background knowledge needed
for the rest of the article. We first provide some notations
to formulate imperfect-information games and discuss CFR,
the most commonly used equilibrium-finding algorithm for
imperfect-information games. Next, we cover the basics of RL.
Then, we discuss different categories of algorithms for solving
imperfect-information games. Finally, we introduce the game
rule of NLTH.

A. Imperfect-Information Games
Imperfect-information games are usually described by a

tree-based formalism called extensive-form games [44]. In an
imperfect-information extensive-form game G there is a finite
set N = {1, . . . , N } of players, and there is also a special
player c called chance; H refers to a finite set of histories,
each member h ∈ H denotes a possible history (or state),
which consists of actions taken by players including chance;
g ⊑ h denotes the fact that g is equal to or a prefix of h;
Z ⊆ H denotes the terminal states and any member z ∈ Z
is not a prefix of any other states; A(h) = {a:ha ∈ H} is the
set of available actions in the nonterminal state h ∈ H \ Z;

A player function P:H \Z → N ∪ {c} assigns a member of
N ∪ {c} to each nonterminal state in H \ Z , i.e., P(h) is the
player who takes an action in state h.

For a state set {h ∈ H:P(h) = i}, Ii denotes an information
partition of player i ; A set Ii ∈ Ii is an information set
of player i and I (h) represents the information set which
contains the state h. If g and h belong to the same information
set Ii , then the player i cannot distinguish between them,
so we can define A(Ii) = A(h) and P(Ii) = P(h) for
arbitrary h ∈ Ii . We define |I| = maxi∈N |Ii | and |A| =

maxi∈N maxIi ∈Ii |A(Ii)|. For each player i ∈ N , a utility
function ui (z) define the payoff received by player i upon
reaching a terminal state z. 1i is the range of payoffs
reachable by player i , i.e., 1i = maxz∈Z ui (z) − minz∈Z ui (z)
and 1 = maxi∈N 1i .

A strategy profile σ = {σi |σi ∈ 6i , i ∈ N } is a specifica-
tion of strategies for all players, where 6i is the set of all possi-
ble strategies for player i , and σ−i refers to the strategies of all
players other than player i . For each player i ∈ N , its strategy
σi assigns a distribution over A(Ii) to each information set Ii

of player i . The strategy of the chance player σc is usually a
fixed probability distribution. σi (a|h) denotes the probability
of action a taken by player i ∈ N at state h. In imperfect
information games, ∀h1, h2 ∈ Ii , we have σi (Ii) = σi (h1) =

σi (h2). The state reach probability of h is denoted by
πσ (h) if all players take actions according to the strategy
profile σ . The state reach probability can be composed into
each player’s contribution, i.e., πσ (h) =

∏
i∈N∪{c} πσ

i (h) =

πσ
i (h)πσ

−i (h), where πσ
i (h) =

∏
h′a⊑h,P(h′)=i σi (a|h′) is player

i ′s contribution and πσ
−i (h) =

∏
h′a⊑h,P(h′)̸=i σP(h′)(a|h′) is

all players’ contribution except player i . The information set
reach probability of Ii is defined as πσ (Ii) =

∑
h∈Ii

πσ (h).
The interval state reach probability from state h′ to h is
defined as πσ (h′, h) = πσ (h)/πσ (h′) if h′

⊑ h. πσ
i (Ii),

πσ
−i (Ii), πσ

i (h′, h), and πσ
−i (h

′, h) are defined similarly.
To facilitate the reader’s understanding, we use Kuhn poker

as a simple example to illustrate the terminologies and symbols
more concretely. Kuhn poker is a simple imperfect-information
game with a three-card deck: Jack (J), Queen (Q), and King
(K). Each player antes a single chip and has one more chip
to bet with, then gets a single private card at random and one
is left face down, and players proceed to pass (p), bet (b),
call (c), or fold (f). Fig. 1 shows a partial game tree of Kuhn
poker, where two players are dealt Q/J in the left sub-tree
and Q/K in the right sub-tree. Each black diamond node, i.e.,
z1, . . . , z10 represents a terminal node and h0, . . . , h8 denote
nonterminal nodes. The trajectory from the root to each node
is a history of actions. For example, h7 contains the chance
player’s action “Deal Q to player 1 and J to player 2,“ player
1’s action “p,” and player 2’s action “b.” We have h3 ⊑ h7,
A(h7) = { f, c}, and P(h7) = 1. Since Player 2’s private card
is invisible to player 1, h1 and h2 are in the same information
set and are indistinguishable from player 1. Similarly, h7 and
h8 are in the same information set. We use I0 to denote the
information set of h7 and h8. Because h7 and h8 are undis-
tinguished by player 1, we have A(I0) = A(h7) = A(h8),
P(I0) = P(h7) = P(h8), and σ1(I0) = σ1(h7) = σ1(h8).
πσ (h7) is the history reach probability of h7 if all players

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OpenHoldem: A BENCHMARK FOR LARGE-SCALE IMPERFECT-INFORMATION GAME RESEARCH 14621

Fig. 1. Partial game tree of Kuhn poker.

play according to σ , we have πσ (h7) = πσ
1 (h7)π

σ
2 (h7) and

πσ (h1, h7) = πσ (h7)/π
σ (h1) since h1 ⊑ h7.

B. Best Response and Nash Equilibrium
For each player i ∈ N , the expected utility uσ

i =∑
z∈Z πσ (z)ui (z) is the expected payoff of player i obtained

at all possible terminal states. The best response to the
strategy profile σ−i is any strategy σ ∗

i of player i that achieves
optimal payoff against σ−i , i.e., σ ∗

i = arg maxσ ′

i ∈6i
u(σ ′

i ,σ−i)

i .
For the two-player zero-sum games, i.e., N = {1, 2} and
∀z ∈ Z, u1(z) + u2(z) = 0, the Nash equilibrium is the most
commonly used solution concept which is a strategy profile
σ ∗

= (σ ∗

1 , σ ∗

2) such that each player’s strategy is the best
response to the other. An ϵ-Nash equilibrium is an approx-
imate Nash equilibrium, whose strategy profile σ satisfies:
∀i ∈ N , uσ

i + ϵ ≥ maxσ ′

i ∈6i u(σ ′

i ,σ−i)

i . The exploitability of
a strategy σi is defined as ϵi (σi) = uσ ∗

i − u
(σi ,σ

∗

−i)

i . A strategy
is unexploitable if ϵi (σi) = 0.

C. Counterfactual Regret Minimization
CFR [24] is an iterative algorithm for computing approxi-

mate Nash equilibrium in imperfect-information games and is
widely used in NLTH AI. CFR frequently uses counterfactual
value, which is the expected payoff of an information set given
that player i tries to reach it. Formally, for player i at an infor-
mation set I ∈ Ii given a strategy profile σ , the counterfactual
value of I is vσ

i (I) =
∑

h∈I (π
σ
−i (h)

∑
z∈Z(πσ (h, z)ui (z)).

The counterfactual value of an action a in I is vσ
i (a|I) =∑

h∈I (π
σ
−i (h)

∑
z∈Z(πσ (ha, z)ui (z)).

CFR typically starts with a random strategy σ 1. On each
iteration T , CFR first recursively traverses the game tree
using the strategy σ T to calculate the instantaneous regret
r T

i (a|I) of not choosing action a in an information set I
for player i , i.e., r T

i (a|T) = vσ T

i (a|I) − vσ T

i (I). Then CFR
accumulates the instantaneous regret to obtain the cumulative
regret RT

i (a|I) =
∑T

t=1 r t
i (a|I) and uses regret-matching [45]

to calculate the new strategy for the next iteration

σ T +1
i (a|I) =

RT,+

i (a|I)∑
a′∈A(I) RT,+

i (a′|I)
,

∑
a′

RT,+
i

(
a′

|I
)

> 0

1
|A(I)|

, otherwise

(1)

where RT,+
i (a|I) = max(RT

i (a|I), 0).

In two-player zero-sum imperfect-information games,
if both players play according to CFR on each iteration then
their average strategies σ̄ T converge to an ϵ-Nash equilibrium
in O(|I|

2
|A|12/ϵ2) iterations [24]. σ̄ T is calculated as

ST
i (a|I) =

T∑
t=1

(
πσ t

i (I)σ t
i (a|I)

)
σ̄ T

i (a|I) =
ST

i (a|I)∑
a′∈A(I) ST

i (a′|T)
. (2)

Therefore, CFR is a ready-to-use equilibrium finding algorithm
in two-player zero-sum games.

D. Reinforcement Learning

In RL, an agent attempts to find the optimal policy to
maximize its long-term reward through trial and error. This
process is formulated by the Markov decision process (MDP).
An MDP is a tuple M = ⟨S, A, R, T, γ ⟩, consisting of a set of
states S, a set of actions A, a reward function R:S × A → R,
a transition probability model P(st+1|st , at), and a discount
factor γ ∈ [0, 1]. A policy π maps a state to a probability
distribution of actions, π :S → 1(A), where 1(·) denotes
the probability simplex. At each time step t , the environment
has a state st . The agent observes this state and chooses an
action at ∼ π(a|st). The environment returns a reward rt to
the agent, and transits into the next state st+1 sampled from
the distribution P(·|st , at). The reward might be discounted
by the discount factor γ at each time step to favor more
recent rewards. The goal of the agent is to find the opti-
mal policy that maximizes the discounted cumulative reward
Rγ

t =
∑

∞

k=0 γ krt+k .

E. Algorithms for Solving Imperfect-Information Games

Solving imperfect-information games is an important prob-
lem in the neural network and learning system commu-
nity [46], [47], [48]. There are two main types of algorithms
for solving imperfect-information games, i.e., the no-regret
based algorithms and the best-response based algorithms. The
no-regret based methods are online algorithms that minimize
the regrets of both players so that the average strategy gradu-
ally approximates the Nash equilibrium. Due to the theoretical
guarantee, no-regret based learning is a hot topic in the
learning system community, and lots of papers have been
published [49], [50], [51], [52]. For example, the Proximal
Online Gradient [49] is a recently proposed state-of-the-art
no-regret algorithm. Unlike these existing methods, which
mainly focus on normal-form games or bandit problems,
the CFR-based AI (see Section IV-B2) in OpenHoldem is
a no-regret learning algorithm for large-scale extensive-form
games, which can serve as a good starting point for large-scale
equilibrium-finding and will be interest to the researchers in
the online no-regret learning community.

In best-response-based methods, the agents learn to improve
their performance by iteratively best-responding to their
opponents. The best-response based methods can easily be
integrated with deep RL methods and work effectively in

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

14622 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

large-scale zero-sum games. For example, the online mini-
max Q network learning algorithm [46] uses DQN [2] as
the best-response learner to find the Nash equilibrium in
two-player zero-sum games. The deep RL-based AI (see
Section IV-B4) in OpenHoldem is also a best-response-based
method which learns from the input states to the output actions
directly. The new techniques and underlying principles of this
AI are helpful in developing general neural network-based
learning algorithms for more imperfect-information games and
will be interest to the neural network and learning system
community.

F. No-Limit Texas Hold’em

NLTH has been the most widely played type of poker for
over a decade. The heads-up (i.e., two-player) variant prevents
opponent collusion and allows a clear winner to be determined,
so HUNL becomes the primary testbed in the computer poker
and game theory communities. HUNL is a repeated game
in which the two players play a match of individual games,
usually called hands. On each hand, one player will win some
number of chips from the other player, and the goal is to win
as many chips as possible throughout the match. In this article,
we follow the standard form of HUNL poker agreed upon by
the research community [37], where each player starts each
hand with a stack of U.S. $20 000 chips. Resetting the stacks
after each hand allows for each hand to be an independent
sample of the same game and is called “Doyle’s Game,”
named for the professional poker player Doyle Brunson who
publicized this variant.

HUNL consists of four rounds of betting. On each round of
betting, each player can choose to either fold, call, or raise.
If a player folds, the game will end with no player revealing
their private cards, and the opponent will take the pot. If a
player calls, he or she places several chips in the pot by
matching the number of chips entered by the opponent. If a
player raises by x , he or she adds x more chips to the pot than
the opponent. A raise of all remaining chips is called an all
in bet. A betting round ends if each player has taken action
and entered the same amount of chips in the pot as every
other player still in hand. At the beginning of a round, when
there are no opponent chips yet to match, the raise action is
called bet, and the call action is called check. If either player
chooses to raise first in a round, they must raise a minimum
of U.S. $100 chips. If a player raises after another player has
raised, that raise must be greater than or equal to the last raise.
The maximum amount for a bet or raise is the remainder of
that player’s stack, which is U.S. $20 000 at the beginning of
a hand.

In HUNL, at the beginning of each hand, the first player,
i.e., P1, enters a big blind (usually U.S. $100) into the pot; the
second player, i.e., P2, enters a small blind which is generally
half the size of the big blind; and both players are then dealt
with two hole (private) cards from a standard 52-card deck.
There is then the first round of betting (called the preflop),
where the second player P2 acts first. The players alternate
in choosing to fold, call, or raise. After the preflop, three
community (public) cards are dealt face up for all players to
observe, and the first player, P1, now starts a similar round of

betting (called the flop) to the first round. After the flop round
ends, another community card is dealt face up, and the third
round of betting (called the turn) commences where P1 acts
first. Finally, a fifth community card is dealt face up, and a
fourth betting round (called the river) occurs, again with P1
acting first. If none of the players folds at the end of the fourth
round, the game enters a show-down process: the private cards
are revealed, the player with the best five-card poker hand,
constructed from the player’s two private cards and the five
community cards, wins the pot. In the case of a tie, the pot
is split equally among the players. A match consists of a
large number of poker hands, in which the players alternate
their positions as the first and the second player. The rules of
Six-player NLTH and HUNL are roughly the same. For the
detailed rules of Six-player NLTH, refer to the supplementary
materials of [25].

Since NLTH can be played for different stakes, such as
a big blind being worth U.S. $0.01 or U.S. $1000, it is
inappropriate to measure the performance by chips. Hence,
players commonly measure their performance over a match
as their average number of big blinds won per hand. The
computer poker community has standardized on the unit milli-
big-blinds per hand, or mbb/h, where one milli-big-blind is
one-thousandth of one big blind. For example, a player that
always folds will lose 750 mbb/h (by losing 1000 mbb as the
big blind and 500 as the small blind).

IV. OPENHOLDEM

Our proposed OpenHoldem framework consists of three
parts, i.e., the evaluation protocols, the baseline AIs, and
the online testing platform. The high-level design paradigm
of OpenHoldem is shown in Fig. 2, which clearly specifies
the design flow of each of its components. Specifically, the
design principle of the evaluation protocol is that it should be
able to fully test the algorithm’s performance from different
perspectives. To this end, we design two kinds of evaluation
metrics, i.e., the head-to-head-based evaluation metric and the
exploitability based metric. The head-to-head-based evaluation
metric can accurately measure the algorithm’s expected perfor-
mance through variance reduction techniques. The exploitabil-
ity based metric can estimate the algorithm’s worst case
performance by efficiently calculating its approximate best
response. Next, the design principle of the baseline AIs is
that they should contain a variety of mainstream algorithms.
We therefore design four different types of AIs, i.e., rule-based
AIs, a CFR-based static AI, a DeepStack-like online AI, and
a novel RL-based AI. These baseline algorithms are rich and
strong enough to serve as a good starting point for future
research. Finally, the design principle of the testing platform is
that it should be convenient and easy to use. For this purpose,
we design an online testing platform to which researchers can
connect through easy-to-use APIs to play against each other
for mutual improvement. Next, we will expatiate these three
parts, respectively.

A. Evaluation Protocols

Evaluating the performance of different NLTH agents is
challenging due to the inherent variance in the game. A better

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OpenHoldem: A BENCHMARK FOR LARGE-SCALE IMPERFECT-INFORMATION GAME RESEARCH 14623

Fig. 2. OpenHoldem provides an integrated toolkit for large-scale imperfect-information game research using NLTH with three main components: the
evaluation protocols, the baseline NLTH AIs, and an online testing platform.

agent may lose in a short period simply because it was dealt
with weaker cards. Moreover, different papers use different
evaluation metrics, making comparisons of different methods
difficult. In OpenHoldem, we propose using the following
evaluation metrics to thoroughly test different algorithms from
different aspects.

1) Head-to-Head Based Evaluation Metrics: One of the
main goals of agent evaluation is to estimate the expected
utility uσ

i given a strategy profile σ . If the game is small,
one can compute this expectation exactly by enumerating all
terminal states, i.e., uσ

i =
∑

z∈Z πσ (z)ui (z). In the large-
scale NLTH, however, this approach is unpractical. The most
commonly used approach to approximately estimate uσ

i is
sampling. Specifically, the agents repeatedly play against each
other, drawing independent samples z1, . . . , zT with the prob-
ability πσ (z). The estimator ûσ

i is the average utility

û
σ

i =
1
T

T∑
t=1

ui (zt). (3)

This estimator is unbiased, i.e., E[ûσ

i] = uσ
i , so the mean-

squared-error (mse) of ûσ

i is its variance

mse
(

û
σ

i

)
= Var

[
û

σ

i

]
=

1
T

Var[ui (z)]. (4)

This sampling-based approach is effective when the domain
has little stochasticity, i.e., Var[ui (z)] is small, but this is
not the case in NLTH. We propose to use the following
two variance reduction techniques to alleviate the effects of
randomness and ensure statistically significant results.

Duplicate Poker is a simple and easy-to-implement vari-
ance reduction technique that attempts to mitigate the effects
of luck and is widely used in the ACPCs [37]. For example,
in HUNL, let us say agent A plays one seat and agent B plays
the other seat. First, we let A and B play M hands of poker,
then we switch their seats and play another M hands of poker
with the same set of cards for each seat. By doing so, if agent
A is dealt two aces in the first hand, then agent B will be
dealt two aces in the M + 1th hand, so the effects of luck
are significantly alleviated. The process of duplicate poker for
multiplayer NLTH is similar.

AIVAT is a more principled variance reduction technique
for evaluating agents’ performance in imperfect-information
games [53]. The core idea of AIVAT is to derive a real-valued
function ũi that is used in place of the true utility function ui .
On one hand, the expectation of ũi (z) matches that of ui (z) for
any choice of strategy profile σ , so ũσ

i = (1/T)
∑T

t=1 ũi (zt) is
also an unbiased estimator of the expected utility uσ

i . On the
other hand, the variance of ũi (z) is designed to be smaller
than that of ui (z), so mse(ũσ

i) < mse(ûσ

i), i.e., ũσ

i is a
better estimator than ûσ

i . More specifically, AIVAT adds a
carefully designed control variate term for both chance actions
and actions of players with known strategies, resulting in a
provably unbiased low-variance evaluation tool for imperfect-
information games. It is worth noting that duplicate poker and
AIVAT can be combined to further reduce the variance.

2) Exploitability Based Evaluation Metrics: Most works
on computer poker are to approximate a Nash equilibrium,
i.e., produce a low-exploitability strategy. However, head-to-
head evaluation is a poor equilibrium approximation quality
estimator in imperfect-information games [14]. For example,
in the game of Rock-Paper-Scissors, consider the exact Nash
equilibrium strategy (i.e., playing each option with equal
probability) playing against a dummy strategy that always
plays “rock.” The head-to-head-based evaluation results are a
tie in this example, but the two strategies are vastly different
in terms of exploitability. Therefore, the exploitability is also a
crucial evaluation metric in imperfect-information games. The
exploitability of one strategy can be measured by calculating
its best-response strategy, but the large size of NLTH’s game
tree makes an explicit best-response computation intractable.
We propose to use the following two techniques to calculate
the exploitability approximately.

Local best response (LBR) is a simple and computationally
inexpensive method to find a lower-bound on a strategy’s
exploitability [54]. The most important concept in LBR is the
agent’s range, i.e., the probability distribution on each of the
possible private cards the agent holds. Suppose we want to
find the LBR of the agent A with known strategy σa . At the
beginning of each hand, it is equally likely that A holds any
pair of private cards. The probabilities of actions performed by
A depend on the private cards it holds. Knowing the strategy

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

14624 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

of A, we can use Bayes’ theorem to infer the probabilities
that A holds each of the private cards. Based on the range
of A, LBR greedily approximates the best response actions,
i.e., the actions which maximize the expected utility under the
assumption that the game will be checked/called until the end.
Thus, LBR best-responds locally to the opponent’s actions by
looking only at one action ahead, providing a lower bound
on the opponent’s exploitability. LBR also relies on playing
standard poker hands, so the variance reduction techniques
(e.g., AIVAT) can be exploited to reduce the number of hands
required to produce statistically significant results.

a) Deep RL-based best response (DRL-BR): Because the
game tree of NLTH is too large, the LBR algorithm does
not explicitly compute a best-response strategy but uses its
local approximation to play against the evaluated agent A
directly. In DRL-BR, we try to explicitly approximate the best
response strategy by training a DRL agent B against A. More
specifically, by treating A as part of the environment, then
from the perspective of B, the environment can be modeled
as an MDP. B can leverage some suitable DRL algorithms
(e.g., DQN [2], PPO [55], etc.) to learn to maximize its
payoff from its experience of interacting with the environment,
i.e., playing against A. This approach turns the problem of
finding the best response strategy into a single-agent RL
problem. An approximate solution of the MDP by RL yields
an approximate best response to the evaluated agent A. After
obtaining the approximate best response B, the head-to-head
evaluation result (e.g., AIVAT) can be used to approximate
the exploitability of A by having them repeatedly play against
each other.

B. Baseline AIs

Despite significant progress in designing NLTH AIs in
recent years, almost all of these AIs are not publicly available.
This situation makes it very challenging for new researchers to
further study this problem since designing and implementing
a decent NLTH AI is often very complicated and tedious.
To fill this gap, in OpenHoldem, we design and implement
four different types of NLTH AIs, which are strong enough
to serve as a good starting point for future research in this
area.

1) Rule-Based AI: The rule-based method is probably the
most straightforward way to implement NLTH AI. A rule-
based NLTH AI consists of a collection of rules designed by
domain experts. In OpenHoldem, we develop AR, a strong
rule-based NLTH AI designed by some skilled poker players
in our research group. Our rule-based AI AR handles about
106 different scenarios that are likely to occur in the real play
of NLTH and contains tens of thousands of lines of code. As a
suggestion, when researchers implement their own NLTH AIs,
it is helpful to compare them to AR as a sanity check.

Besides the strong rule-based AI AR, we also designed
some other rule-based AIs with different styles and strengths
(see Table I). These agents can be used as learning materials
for beginners, and more importantly, they can also be used for
opponent modeling research. These AIs calculate the expected
winning probability at each stage and then make decisions
based on these probabilities and different predefined rules.

TABLE I
OPENHOLDEM PROVIDES MANY RULE-BASED AIS WITH DIFFERENT

STYLES AND STRENGTHS

2) CFR-Based Static AI: While the rule-based approach
provides a simple framework for implementing NLTH AIs,
the resulting strategies are exploitable. Therefore, most recent
studies in NLTH AIs focus on approximating the theoretically
unexploitable Nash equilibrium strategies. Among them, the
most successful approach is the CFR algorithm [24] and
its various variants [41], [42], [56]. CFR-type algorithms
iteratively minimize the regrets of both players so that the
time-averaged strategy gradually approximates the Nash equi-
librium. In OpenHoldem, we design and implement AC ,
a strong CFR-based NLTH AI, which aims to serve as a
starting point for the large-scale equilibrium-finding research.
Overall, AC first uses the abstraction algorithm to create a
smaller abstract game, then approximates the Nash equilibrium
strategy in this abstract game, and finally executes the resulting
strategy in the original game.

The abstraction algorithm aims to take a large-scale imper-
fect information game as input and output a smaller but
strategically similar game solvable by current equilibrium-
finding algorithms. It usually consists of two parts, informa-
tion abstraction and action abstraction. In AC , we use the
potential-aware information abstraction algorithm [39], which
uses the k-means algorithm with the Earth mover’s distance
metric to cluster cards with similar potential. Action abstrac-
tion further reduces the size of the game tree by restricting
the available actions, which is especially important in games
with large action spaces, such as NLTH. In AC , we restrict
the actions to “fold,” “call,” “check,” “bet 0.5 pot,” “bet pot,”
and “allin.”

After obtaining the manageable abstract game G, we use the
CFR+ [41] algorithm to approximate the Nash equilibrium in
G. As shown in Algorithm 1, given the current strategy profile
σ t , we first calculate the cumulative regret of each action after
t iterations in Line 8. Then, the new strategy in the t + 1th
iteration is updated in Line 9 by the regret-matching algorithm.
Finally, by normalizing the cumulative strategy ST in Line 13,
the average strategy σ̄ T will approach a Nash equilibrium
when T is large enough. During the actual play phase, AC
first finds the abstract state that corresponds to the current
real state of the game. Then, the abstract game’s approximate
Nash equilibrium σ̄ T is queried for the probability distribution
over different actions. Finally, an action is sampled from this
distribution and played in the actual game, if applicable.

3) DeepStack-Like Online AI: In essence, the AC agent is
a static table calculated offline that contains the probability

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OpenHoldem: A BENCHMARK FOR LARGE-SCALE IMPERFECT-INFORMATION GAME RESEARCH 14625

Algorithm 1 The CFR+ Algorithm Which Is Used to
Train AC
Input: The abstract game G, the randomly initialized strategy
profile σ 1, the zero initialized cumulative regret R0 and
cumulative strategy S0.
Parameter: The number of iterations T .
Output: The approximate Nash equilibrium σ̄ T

= {σ̄ T
1 , σ̄ T

2 }.
1: for t = 1 → T do
2: for i = 1 → 2 do
3: vσ t

i (h) =
∑

h⊑z,z∈Z πσ t

−i (h)πσ t
(h, z)ui (z)

4: vσ t

i (a|h) = vσ t

i (ha)

5: vσ t

i (Ii) =
∑

h∈Ii
vσ t

i (h)

6: vσ t

i (a|Ii) =
∑

h∈Ii
vσ t

i (ha)

7: rσ t

i (a|Ii) = vσ t

i (a|Ii) − vσ t

i (Ii)

8: Rt
i (a|Ii) = max(0, Rt−1

i (a|Ii) + rσ t

i (a|Ii))

9: σ t+1
i (a|Ii) = (Rt

i (a|Ii))/(
∑

a∈A(Ii)
Rt

i (a|Ii))

10: St
i (a|Ii) = St−1

i (a|Ii) + πσ t

i (Ii)σ
t
i (a|Ii)

11: end for
12: end for
13: σ̄i

T (a|Ii) = (ST
i (a|Ii))/(

∑
a∈A(Ii)

ST
i (a|Ii))

distributions over possible actions in all situations. During
actual play, if the opponent chooses an action that is not
in the action abstraction of AC , i.e., an off-tree action, AC
round this off-tree action to a nearby in-abstraction action.
A more principled approach to calculating the off-tree action’s
response is solving a subgame that immediately follows that
off-tree action. DeepStack [14] is a representative online algo-
rithm based on this idea. In particular, DeepStack allows com-
putation to focus on specific situations raised when making
decisions using a sound local strategy computation algorithm
called continual resolving. To make continual resolving com-
putationally tractable, DeepStack replaces sub-trees beyond a
certain depth with a learned value function based on deep
neural network.

The authors of DeepStack [14] do not release the training
code or model for NLTH. They only release a pedagogical
code for Leduc Hold’em1 which cannot be transferred directly
to NLTH because the game tree of NLTH is much larger
than that of Leduc Hold’em, and the pedagogical code does
not contain the necessary acceleration techniques for NLTH.
Based on this situation, we reimplement DeepStack for NLTH
following the original article’s key ideas and obtain an online
AI called AD, which aims to serve as a starting point for
the research of subgame solving in large-scale imperfect-
information games. Specifically, we spent several weeks using
120 high-end GPUs to generate tens of millions of training
samples for the river, turn, and flop value networks, which is
larger than the amount of data used in the original article. Each
training sample is generated by running 1000 CFR+ iterations
based on a random reach probability. Since generating these
training data requires enormous computing resources, we will
provide download links for these training data later. Everyone
can freely use these data for research. It is worth noting that

1https://github.com/lifrordi/DeepStack-Leduc

Fig. 3. End-to-end learning architecture of our deep RL based AI ARL.
FC represents fully connected layer. The different colors of the two ConvNets
indicate that their parameters are not shared.

Noam Brown, the creator of Libratus, recently coauthored
a paper [57], in which they also reimplemented DeepStack.
AD has achieved similar results to theirs, which validates the
correctness of our reimplementation.

4) Deep RL-Based AI: The three agents, i.e., the rule-based
AI AR, the CFR based static AI AC , and the DeepStack-like
online AI AD, described in Section IV-B1, Section IV-B2,
and Section IV-B3 are all based on improvements of existing
techniques. These AIs often rely on different kinds of domain
knowledge, such as expert rules in AR and handcrafted
abstraction algorithms in AC . Besides, there are also compu-
tational issues, i.e., in the inference stage of AD, the CFR
iteration process consumes much computation. Specifically,
this iteration process often needs to be carried out 1000 times
in practice to ensure high-quality prediction.

Based on the above considerations, in OpenHoldem, we fur-
ther propose a high-performance and lightweight NLTH AI,
i.e., ARL, obtained with an end-to-end deep RL framework.
ARL adopts a deep neural network to directly learn from the
input state information to the output actions. The main techni-
cal contributions of ARL include a novel state representation
of card and betting information, and a novel RL loss function.
ARL is the first AI that obtains competitive performance in
NLTH solely through RL.

a) Overall architecture: ARL aims to remove the expen-
sive computation of CFR iteration in both the training and
testing stages of an NLTH AI while eliminating the need
for domain knowledge. It thus pursues an end-to-end learning
framework to perform efficient and effective decision-making
in imperfect-information games. Here, end-to-end means that
the framework directly accepts the game board information
and outputs the actions without encoding handcrafted features
as inputs or performing iterative reasoning in the decision
process. ARL adopts the RL framework to achieve this goal,
and the only force to drive the model to learn is the reward.

In NLTH, the game board information includes the current
and historical card information and the player action infor-
mation. The agent chooses from a set of betting actions to
play the game and try to win more rewards. To capture the
complex relationship among the game board information, the
desired betting actions, and the game rewards, we design a
pseudo-Siamese architecture equipped with the RL schema to
learn the underlying relationships from end to end. We illus-
trate the end-to-end learning architecture of ARL in Fig. 3.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

14626 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

As shown in Fig. 3, the input of the architecture is the game
state representations of action and card information, which are,
respectively, sent to the top and bottom streams of the Siamese
architecture. Since the action and card representations provide
different kinds of information to the learning architecture,
we first isolate the parameter-sharing of the Siamese archi-
tecture to enable the two ConvNets to learn adaptive feature
representations, which are then fused through fully connected
layers to produce the desired actions. This design is the reason
why we call it pseudo-Siamese architecture. To train ARL,
we present a novel Triple-Clip loss function to update the
model parameters using RL algorithms. We believe these new
techniques and underlying principles are helpful in developing
general learning algorithms for more imperfect-information
games.

b) Effective game state representation: The existence of
private information and flexibility of bet size cause the NLTH
AI learning extremely challenging. To obtain an effective and
suitable feature representation for end-to-end learning from
the game state directly to the desired action, we design a
new multidimensional feature representation to encode both
the current and historical card and bet information.

In NLTH, the card and action information exhibit differ-
ent characteristics. We thus represent them as two separated
three-dimension tensors and let the network learn to fuse them
(see Fig. 3). We design the card tensor in six channels to
represent the agent’s two private cards, three flop cards, one
turn card, one river card, all public cards, and all private and
public cards. Each channel is a 4 × 13 sparse binary matrix,
with 1 in each position denoting the corresponding card. Since
there are usually at most six sequential actions in each of
the four rounds, we design it in 24 channels for the action
tensor. Each channel is a 4 × nb sparse binary matrix, where
nb is the number of betting options, and the four dimensions
correspond to the small blind’s action, the big blind’s action,
the sum of two player’s action, and the legal actions. In the
experiments, we adopt nine betting options (nb = 9), i.e.,
“fold,” “check,” “call,” “bet 0.5 pot,” “bet 0.75 pot,” “bet
pot,” “bet 1.5 pot,” “bet 2 pot,” and “allin.” To understand our
proposed state representation, Fig. 4(a) illustrates one example
that the small blind plays an action “call” after getting a hand
“AsKs,” followed by a “call” from the big blind, and then three
public cards “JcQcKc” are dealt.

Previous CFR-based methods, such as Slumbot and Libra-
tus, often use some abstraction algorithms to represent game
state information. They typically exploit some clustering algo-
rithms to abstract the cards and betting information into
different groups, which may lose much subtle but essential
information. In contrast, our proposed state representation uses
multidimensional tensors to encode and reserve all the card
and betting information.

Recently, many imperfect-information game algorithms
based on deep neural networks have been proposed, such as
DeepCFR, single DeepCFR, etc. These methods use vectors to
represent the card and betting information. Specifically, they
first use an embedding vector to represent each card, then
sum up the embeddings of all cards in each round as the
round embedding, and finally concatenate the embeddings of

Fig. 4. Comparison of our proposed tensor-based and the existing
vector-based state representation methods. In this example, the small blind
plays an action “call” after getting a hand “AsKs,” followed by a “call” from
the big blind, and then three public cards “JcQcKc” are dealt. (a) Tensor-based
state representation. (b) Vector-based state representation.

all rounds as the card representation. The betting information
is represented by a bet occurred vector and a bet size vector.
Each position in the bet occurred vector is a binary value
specifying whether a bet has occurred, and each position
in the bet size vector is a float value specifying the bet
size. In Fig. 4(b), we use a schematic way to compare
our tensor-based state representation with the vector-based
representation more clearly. Compared with the plain vector-
based representation, our method uses structured tensors to
represent state information, which contains richer spatial and
temporal information and is thus more efficient.

In summary, our state representation has several advantages:
1) there is no abstraction of the card information thus reserves
all the game information; 2) the action representation is
general and can denote a different number of betting options
(though nb = 9 produce satisfactory results in the experiment);
3) all the historical information is encoded to aid reasoning
with hidden information; and 4) the multidimensional tensor
representation is very suitable for modern deep neural archi-
tectures like ResNet [58] to learn effective feature hierarchies,
as verified in the AlphaGo AI training.

c) Effective learning with triple-clip PPO: With the
multidimensional feature representation, a natural choice is to
use state-of-the-art RL algorithms such as PPO [55] to train
the deep architecture. PPO is an actor–critic framework which
trains a value function Vφ(st) and a policy πθ (at |st). PPO
defines a ratio function rt (θ) = (πθ (at |st))/(πθ ′(at |st)) as the
ratio between the current policy πθ and the old policy πθ ′ , and
a policy loss function Lp as

Lp(θ) = Et
[
min

(
rt (θ) Ât , clip(rt (θ), 1 − ϵ, 1 + ϵ) Ât

)]
(5)

where Ât is the advantage function, clip(rt (θ), 1 − ϵ, 1 + ϵ)

ensures rt lie in the interval (1 − ϵ, 1 + ϵ), and ϵ is a clip
ratio hyper-parameter with typical value 0.2. PPO’s value loss
Lv is defined as

Lv(φ) = Et

[(
Rγ

t − Vφ(st)
)2

]
(6)

in which Rγ
t represents the traditional γ -return [59].

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OpenHoldem: A BENCHMARK FOR LARGE-SCALE IMPERFECT-INFORMATION GAME RESEARCH 14627

Fig. 5. The graphs of the original PPO loss and our proposed Triple-Clip
PPO loss. (a) is PPO’s policy loss Lp , (b) is Triple-Clip PPO’s policy loss
Ltcp , (c) is PPO’s value loss Lv , and (d) is Triple-Clip PPO’s value loss Ltcv .

However, the above PPO loss function is difficult to con-
verge for NLTH AI training. We find two main reasons for this
problem: 1) when πθ (at |st) ≫ πθ ′(at |st) and the advantage
function Ât < 0, the policy loss Lp(θ) will introduce a
large variance and 2) due to the strong randomness of NLTH,
the value loss Lv(φ) is often too large. To speed up and
stabilize the training process, we design a Triple-Clip PPO
loss function. It introduces one more clipping hyper-parameter
δ1 for the policy loss when Ât < 0, and two more clipping
hyper-parameters δ2 and δ3 for the value loss. The policy loss
function Ltcp for Triple-Clip PPO is defined as

Ltcp(θ) = Et
[
clip(rt (θ), clip(rt (θ), 1 − ϵ, 1 + ϵ), δ1) Ât

]
(7)

where δ1 > 1 + ϵ, and ϵ is the original clip in PPO. The
clipped value loss function Ltcv for Triple-Clip PPO is defined
as

Ltcv(φ) = Et

[(
clip

(
Rγ

t , −δ2, δ3
)
− Vφ(st)

)2
]

(8)

where δ2 and δ3 do not require manual tuning but represent the
total number of chips the player and the opponent has placed,
respectively. The rationale for Ltcv(φ) is that the value should
be greater than or equal to the loss (i.e., −δ2) when the player
folds and less than or equal to the gain (i.e., δ3) when the
opponent folds.

We explain the superiority of our proposed Triple-Clip
PPO loss in more depth by visualizing and analyzing the
graphs of the original PPO loss and the Triple-Clip PPO
loss. Fig. 5(a) and (b) shows the graphs of Lp(θ) and Ltcp(θ),
respectively. It is clear that the original PPO’s policy loss
Lp(θ) introduces an unbounded variance when Ât < 0.
By optimizing Lp(θ), the new policy will deviate significantly
from the old one, making the training quite fragile and
unstable. By introducing a clipping parameter δ1, the Triple-
Clip PPO’s policy loss Ltcp(θ) is lower bounded by a constant
value, which significantly reduces the variance and improves
the training stability.

Fig. 5(c) and (d) shows the graphs of Lv(φ) and Ltcv(φ),
respectively. Since the γ -return can take a wide range of
values from −20 000 (lose all the chips) to 20 000 (win all the

chips) in NLTH, the original PPO’s value loss Lv(φ) will also
introduce a large variance, which makes the model training
unstable. In contrast, the value loss of our Triple-Clip PPO
effectively limits the γ -return to a reasonable range by two
clipping parameters δ2 and δ3, which dramatically improves
the training stability.

Some previous works also report that clipping on PPO’s
policy loss achieves better results in MOBA games and
MuJoCo environments. Our proposed Triple-Clip PPO loss
further verifies this point in large-scale imperfect-information
games. Moreover, this work finds that clipping on the value
function further improves the training efficiency and stability
significantly, especially for imperfect-information games like
NLTH, which contains rewarding signals with high variance.
The Triple-Clip PPO loss function improves the learning
effectiveness of the actor-critic framework, and we believe it
applies to a wide range of RL applications with imperfect
information.

d) Training details: We train ARL on one computing
server with eight NVIDIA TITAN V GPUs and one AMD
2.00 GHz CPU with 64 cores. The mini-batch size per GPU
is set to 2048; thus, the total batch size is 16 384. We use the
Adam [60] optimizer with an initial learning rate of 0.0003.
For the Triple-Clip PPO loss, the hyper-parameter δ1 is set
to 3, δ2 and δ3 are dynamically calculated according to the
chips played by the players. The discount factor is set to 0.999.
For policy updates, we use GAE [61] with λ = 0.95 as the
advantage estimator. The best-performing model is trained for
a total of 50 000 iterations. During one iteration, there are eight
MPI threads, each of which contains 128 environments and
128 steps. Therefore, ARL uses a total of 6.5 billion training
samples (about 2.7 billion hands). The complete pseudo-code
of ARL is outlined in Algorithm 2.

C. Online Testing Platform

In order to make the comparisons between different NLTH
AIs easier, we develop an online testing platform with the
above four strong baseline AIs, i.e., AR, AC , AD, and ARL
built-in. Researchers can compare the performances between
their own AIs and the built-in baselines through easy-to-use
APIs. Fig. 6 shows an example Python code of connecting to
the platform for testing NLTH AIs. The NLTH AI designers
only need to implement one function, i.e., act, without caring
about the internal structure of the platform. The input of act is
the current game state obtained from the platform through TCP
sockets. The output of act is the action to take in the current
game state according to the designer’s algorithm. The output
action is also sent to the platform through TCP sockets. Fig. 7
shows the system architecture of our testing platform. The
server is responsible for playing the poker hands according
to the rules of NLTH. It also dynamically schedules requests
and allocates resources when necessary. Our platform not
only supports testing between different AIs, but also between
humans and AIs.

We are more than happy to accept high-performance AIs
submitted by everyone to continuously enrich the baseline AIs
of OpenHoldem, with the ultimate goal of providing an NLTH
AI Zoo for the research community. Currently, dozens of

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

14628 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

Algorithm 2 The Pseudo-Code of ARL
Input: The randomly initialized policy parameters θ0 and value
function parameters φ0.
Parameter: The number of training iterations K .
Output: The trained policy πθ .

1: for k = 0 → K − 1 do
2: Collect a set of trajectories Bk = {τi } by running

the policy πθk via self-play. Each trajectory τi in Bk

corresponds to one hand of poker.
3: For each time step t in each trajectory τ , compute the

γ -return Rγ
t =

∑|τ |−t−1
i=0 γ irt+i .

4: For each time step t in each trajectory τ , compute
the advantage Ât based on the GAE estimator and
the value function Vφk , i.e., Ât =

∑|τ |−t−1
i=0 (γλ)iδt+i ,

where δt = rt + γ Vφk (st+1) − Vφk (st).
5: Update the policy parameters by maximizing the

clipped policy objective via stochastic gradient ascent:

θk+1 = arg max
θ

1
|Bk |

∑
τ∈Bk

1
|τ |

|τ |−1∑
t=0

L tcp
t

where L tcp
t = clip(rt (θ), clip(rt (θ), 1 −

ϵ, 1 + ϵ), δ1) Ât if Ât < 0, otherwise,
L tcp

t = min(rt (θ) Ât , clip(rt (θ), 1 − ϵ, 1 + ϵ) Ât).
6: Update the value function parameters by minimizing

the clipped value loss via stochastic gradient descent:

φk+1 = arg min
φ

1
|Bk |

∑
τ∈Bk

1
|τ |

|τ |−1∑
t=0

L tcv
t

where L tcv
t = (clip(Rγ

t , −δ2, δ3) − Vφ(st))
2, δ2 and

δ3 are the number of chips the player and the opponent
has placed at time step t .

7: end for

Fig. 6. Example Python code of connecting to the platform for testing
NLTH AIs.

NLTH AI researchers and developers are using this platform.
It has accumulated about 20 million high-quality poker data,
which increases by about 100 000 per day. We believe these
large-scale data will also facilitate the research of data-driven
imperfect-information game solving, imitation learning, and
opponent modeling algorithms.

Fig. 7. Schematic of our testing platform’s system architecture.

TABLE II

HEAD-TO-HEAD PERFORMANCES (mbb/h) OF THE RULE BASED AI AR ,
THE CFR BASED AI AC , THE DEEPSTACK-LIKE AI AD ,

AND THE RL BASED AI ARL WHEN PLAYING
AGAINST SLUMBOT, RESPECTIVELY

V. EXPERIMENTS

In this section, we first compare the performance of our
baseline NLTH AIs with other publicly available NLTH AIs
using the proposed evaluation protocols and online testing
platform. Then, we conduct a set of ablation studies to analyze
the effects of various design choices in the baseline NLTH AIs.

A. Comparison to the State-of-the-Arts

To the best of our knowledge, Slumbot [22], the champion
of the 2018 ACPC, is the only publicly available NLTH AI that
provides comparisons through an online website.2 Slumbot is
a strong CFR-based agent whose entire policy is precomputed
and used as a lookup table. Similar to our AC , Slumbot first
uses some abstraction algorithm to create a smaller abstract
NLTH game. Then it approximates the Nash equilibrium in
the abstract game using the CFR-type algorithm and finally
executes the resulting strategy in the original game.

The purpose of Slumbot’s website is to facilitate human
players to compete with it, and there are no open-source
tools available to test the performance of AI against Slumbot.
Due to the poor stability of Slumbot’s website, playing with
a simulated browser will lose the connection after a certain
number of matches, so we developed a software that uses
an alternative method of sending data packets directly. Based
on this software, we compare each of our baseline AIs
with Slumbot for 100 000 hands, and the head-to-head based
evaluation results (AIVAT) are shown in Table II.

We can see that the DeepStack-like AI AD outperforms
Slumbot by a large margin. This result demonstrates that
the real-time subgame solving technique used by DeepStack
performs better than Slumbot’s offline solving procedure.
Although the performance of the CFR-based AI AC is not as

2https://www.slumbot.com/

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OpenHoldem: A BENCHMARK FOR LARGE-SCALE IMPERFECT-INFORMATION GAME RESEARCH 14629

Fig. 8. Training and validation loss curves of the flop network when using
x ∈ {1, 2, 3} million training samples, respectively.

good as that of Slumbot, its performance is also commendable
because Slumbot exploits a far more fine-grained abstraction
algorithm. An interesting result is that the rule-based AI AR
outperforms Slumbot. This result is not surprising, as it has
been reported that the abstraction-based programs from the
ACPC are exploitable [54].

Our proposed end-to-end deep RL-based AI ARL beats
Slumbot by a large margin of 110 mbb/h. Compared with
Slumbot, ARL does not require domain knowledge for
abstraction and achieves better performance while significantly
reducing computational and storage resources. ARL also out-
performs AD and beats it by 15 mbb/h. Unlike DeepStack,
ARL does not need iterative learning in both the training and
inference stages. Given input state representation, it performs
only one feedforward pass of the neural network to output the
action directly.

Similar to DeepStack, Libratus from Carnegie Mellon Uni-
versity also defeated professionals using a nested safe sub-
game solving algorithm with an extensible blueprint strategy.
However, compared with DeepStack, Libratus is a more com-
plex system. It contains multiple sophisticated modules and
consumes lots of CPU resources. Due to our limited CPU
resources and domain knowledge, we could not implement
all the details of Libratus. We will continue reproducing
Libratus and deploying it to OpenHoldem when satisfactory
performance is obtained. Meanwhile, since OpenHoldem’s
testing platform is publicly available, we will also try to invite
Libratus’s author to directly use our platform for performance
testing.

The above experimental results illustrate that our baseline
NLTH AIs are adequate to serve as a good starting point for
NLTH AI research. Since AD and ARL obtain the best per-
formance among the four baselines and they are also the most
complicated baselines in terms of design and implementation,
we will conduct some ablation studies to understand the effects
of their various design choices next.

B. Ablation Study on AD

1) Effects of Training Data Size: The training of the river,
turn, and flop value networks of AD requires a lot of training
data. We use ADx to denote the DeepStack-like AIs whose
flop networks are obtained by training with x million samples.
Fig. 8 shows the loss curves of the flop network during training

Fig. 9. Head-to-head performances of AD1 , AD2 , and AD3 when playing
against Slumbot, respectively.

TABLE III

ABLATION ANALYSES OF EACH COMPONENT OF ARL

when x ∈ {1, 2, 3}. It is clear that the flop network suffers from
severe over-fitting when the training data size is small, and
increasing the training data size alleviates this phenomenon.
The head-to-head based evaluation results (AIVAT) in Fig. 9
also show that DeepStack-type AI is data-hungry, and more
training data results in a stronger AI.

2) Effects of CFR Iterations During Continual Resolving:
We use AD:y

3 to denote the DeepStack-like NLTH AIs, which
use y CFR iterations during the continual resolving procedure.
We find that AD:500

3 loses 224 mbb to Slumbot per hand,
while AD:1000

3 wins Slumbot 93 mbb/h. These experimen-
tal results demonstrate that the number of CFR iterations
during continual resolving is critical to the performance of
DeepStack-type AI.

C. Ablation Study on ARL

To analyze the effectiveness of each component of the
RL-based AI ARL, we conduct extensive ablation studies as
shown in Table III. The results of each row are obtained
by replacing one component of ARL, and the rest remains
unchanged. All models use the same number of training
samples, and we use ELO [62] scores to compare their
performance.

1) Effects of Different State Representations: We consider
three alternative methods for state representation compari-
son: 1) vectorized state representation like DeepCFR [63].
As shown in Fig. 4(b), it uses vectors to represent card
and action information; 2) PokerCNN-based state representa-
tion [64] uses tensors to represent card and action information
together and uses a single ConvNet to learn features; and
3) state representation without history information is similar
to ARL except that it does not contain historical action
information.

As shown in Table III, state representation significantly
impacts the final performance. PokerCNN performs better
than the vectorized state representation, demonstrating that it

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

14630 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

Fig. 10. Loss curves of original PPO, dual-clip PPO and triple-clip PPO
during the training process.

TABLE IV
COMPARISONS OF COMPUTATIONAL COST OF DIFFERENT ALGORITHMS

is more effective to represent state information using struc-
tured tensors. ARL outperforms PokerCNN since it uses
a pseudo-Siamese architecture to handle card and action
information separately. ARL is also better than “Without
History Information” since historical action information is
critical to decision-making in NLTH. ARL obtains the best
performance thanks to its effective multidimensional state
representation, which encodes historical information and is
suitable for ConvNets to learn effective feature hierarchies.

2) Effects of Different Loss Functions: For the loss func-
tion, we evaluate ARL’s Triple-Clip PPO loss against two
kinds of losses: 1) original PPO loss [55] and 2) dual-clip
PPO loss [11]. As shown in Table III, compared with the
Original PPO, Dual-Clip PPO has a slight performance boost,
and Triple-Clip PPO (ARL) obtains the best performance.
In Fig. 10, we also observe that the Triple-Clip PPO’s learning
curve is more stable than those of the Original PPO and
the Dual-Clip PPO. This performance improvement is mainly
because ARL’s policy-clip and value-clip loss effectively limit
its output to a reasonable range, thus ensuring the stability
of the policy update. In addition, we find the model with a
small overall loss generally performs better after adding the
value-clip loss, which is very convenient for model selection
during training. This phenomenon also demonstrates that the
Triple-Clip loss helps the model converge to a better policy.

3) Computational Cost Analysis: To further illustrate the
lightweight properties of our proposed end-to-end deep
RL-based AI ARL, we compare it with the state-of-the-art
AIs, i.e., DeepStack and Libratus, from different aspects in
Table IV. Both DeepStack and Libratus compute an abstraction
of the game and introduce subgame solving with the CFR
algorithm. Under the CFR framework, the primary computa-
tion cost comes from the CFR iteration process performed in
both the model training and testing stages. To ensure high-
quality prediction, this iteration process often needs to be

Fig. 11. Probabilities (%) for not folding as the first action for each possible
hand. The bottom-left half shows the policy when the suits of two private
cards do not match, and the top-right half shows the policy when the suits of
two private cards match. (Left to right) Policies of professional human, AD ,
and ARL, respectively.

carried out more than 1000 times in practice, which is very
time-consuming. In contrast, ARL is very lightweight. It infer-
ences from state information directly to the final action using
only a forward pass of the neural network in each decision
point, which is more than a thousand times faster than these
state-of-the-art AIs.

4) Comparison With Humans: To further demonstrate the
performance of ARL, we invite four professional players to
play 10 000 hands against it. Player 1 won the runner-up in
WPT DRAGON SERIES 2015, and Player 2 won the fifth
place in WPT TEAM DRAGON SERIES 2017. The other
two players are both high-end players in online poker. Each
player is given two weeks to complete the 2500 game matches.
To incentivize players to perform at their best, monetary prizes
of U.S. $1000 were awarded to the best performing player.
The players were informed of all of these details when they
registered to participate, and they were allowed to take as long
as they wanted for any decision, but were not allowed to use
any software to assist them while playing. On average, for
each hand, Player 1 spent 6.6 s, Player 2 spent 6.2 s, Player 3
spent 4.1 s, and Player 4 spent 3.3 s. ARL spent 0.01 s per
hand on average.

Matches were played between August 14, 2021, and
August 29, 2021, and run using our online testing platform,
where players can choose to play multiple games simultane-
ously, as is common in online poker sites. The action history
in the hand was displayed on the user interface. This helped
the human if he/she forgot what had happened in the hand so
far. The humans could claim that they accidentally clicked the
wrong action button on the user interface. In each occurrence,
we canceled the hand. We allowed these players to choose
how many days they would spend playing the 2500 hands.
They were also allowed to take breaks at any time.

To reduce the variance caused by all-in, we split the pot
by averaging all possible roll-outs of the remaining cards
in situations where the players went all-in before the final
card was dealt. ARL beats these professionals by 10 mbb/h
on average, which supports its high performance in beating
Slumbot and DeepStack. From the game logs, we observe
that ARL has learned the abilities to perform bluffing and to
recognize the opponent’s bluff, which to some extent explains
its good performance.

5) Visualization of the Learned Policy: To analyze ARL’s
learned policy, we compare the action frequencies where the
agent is the first player to act and has no prior state influencing
it [57] with those from human professional3 and AD. Fig. 11

3Obtained from https://www.wsop.com/how-to-play-poker/

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OpenHoldem: A BENCHMARK FOR LARGE-SCALE IMPERFECT-INFORMATION GAME RESEARCH 14631

shows the policies on how to play the first two cards from
the professional human and the two agents. ARL’s policy is
very similar to that of the human professional, which further
explains its superior performance.

VI. CONCLUSION

This work presents OpenHoldem, a benchmark for large-
scale imperfect-information game research using NLTH.
OpenHoldem provides an integrated toolkit with three main
components: comprehensive evaluation protocols, strong base-
line NLTH AIs, and an easy-to-use online testing platform.
The algorithms in OpenHoldem cover a lot of important
problems in the field of neural networks and learning systems,
such as no-regret learning and deep RL under the imperfect-
information setting. We plan to add more NLTH AIs to
OpenHoldem in the future, with the ultimate goal of providing
an NLTH AI Zoo for the research community. We hope
OpenHoldem will facilitate further studies on the unsolved
theoretical and computational issues in large-scale imperfect-
information games.

REFERENCES

[1] M. Campbell, A. J. Hoane Jr., and F.-H. Hsu, “Deep blue,” Artif. Intell.,
vol. 134, nos. 1–2, pp. 57–83, Jan. 2002.

[2] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[4] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[5] D. Silver et al., “A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play,” Science, vol. 362, no. 6419,
pp. 1140–1144, Dec. 2018.

[6] J. Schrittwieser et al., “Mastering atari, go, chess and Shogi by plan-
ning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609,
Dec. 2020.

[7] M. Jaderberg et al., “Human-level performance in 3D multiplayer
games with population-based reinforcement learning,” Science, vol. 364,
no. 6443, pp. 859–865, May 2019.

[8] O. Vinyals et al., “Grandmaster level in StarCraft II using multi-
agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354,
Nov. 2019.

[9] OpenAI et al., “Dota 2 with large scale deep reinforcement learning,”
2019, arXiv:1912.06680.

[10] J. Li et al., “Suphx: Mastering mahjong with deep reinforcement
learning,” 2020, arXiv:2003.13590.

[11] D. Ye et al., “Mastering complex control in MOBA games with
deep reinforcement learning,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 6672–6679.

[12] D. Ye et al., “Towards playing full MOBA games with deep rein-
forcement learning,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 621–632.

[13] M. Bowling, N. Burch, M. Johanson, and O. Tammelin, “Heads-up limit
hold’em poker is solved,” Science, vol. 347, no. 6218, pp. 145–149,
2015.

[14] M. Moravčík et al., “DeepStack: Expert-level artificial intelligence in
heads-up no-limit poker,” Science, vol. 356, no. 6337, pp. 508–513,
May 2017.

[15] N. Brown and T. Sandholm, “Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals,” Science, vol. 359, no. 6374,
pp. 418–424, Jan. 2018.

[16] D. Zha et al., “Douzero: Mastering DouDizhu with self-play deep
reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 12333–12344.

[17] J. Gray, A. Lerer, A. Bakhtin, and N. Brown, “Human-level performance
in no-press diplomacy via equilibrium search,” in Proc. Int. Conf. Learn.
Represent., 2021, pp. 1–24.

[18] P. R. Wurman et al., “Outracing champion gran turismo drivers with
deep reinforcement learning,” Nature, vol. 602, no. 7896, pp. 223–228,
Feb. 2022.

[19] J. Nash, “Non-cooperative games,” Ann. Math., vol. 54, no. 2,
pp. 286–295, 1951.

[20] J. Rubin and I. Watson, “Computer poker: A review,” Artif. Intell.,
vol. 175, nos. 5–6, pp. 958–987, Apr. 2011.

[21] M. Johanson, “Measuring the size of large no-limit poker games,” 2013,
arXiv:1302.7008.

[22] E. G. Jackson, “Slumbot NL: Solving large games with counterfactual
regret minimization using sampling and distributed processing,” in Proc.
AAAI Conf. Artif. Intell. Workshops, 2013, pp. 35–38.

[23] N. Brown, S. Ganzfried, and T. Sandholm, “Hierarchical abstraction,
distributed equilibrium computation, and post-processing, with applica-
tion to a champion no-limit Texas hold’em agent,” in Proc. Int. Conf.
Auto. Agents Multiagent Syst., 2015, pp. 7–15.

[24] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
minimization in games with incomplete information,” in Proc. Adv.
Neural Inf. Process. Syst., 2008, pp. 1729–1736.

[25] N. Brown and T. Sandholm, “Superhuman AI for multiplayer poker,”
Science, vol. 365, no. 6456, pp. 885–890, Aug. 2019.

[26] C. Liu, E. Zhu, Q. Zhang, and X. Wei, “Modeling of agent cognition
in extensive games via artificial neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 10, pp. 4857–4868, Oct. 2018.

[27] L. Chen, X. Liang, Y. Feng, L. Zhang, J. Yang, and Z. Liu,
“Online intention recognition with incomplete information based on
a weighted contrastive predictive coding model in wargame,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Feb. 2, 2022, doi:
10.1109/TNNLS.2022.3144171.

[28] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCHBOARD:
Telephone speech corpus for research and development,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., Jun. 1992, pp. 517–520.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[30] H. Hassan et al., “Achieving human parity on automatic Chinese to
English news translation,” 2018, arXiv:1803.05567.

[31] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540.
[32] M. Wydmuch, M. Kempka, and W. Jaskowski, “ViZDoom competi-

tions: Playing doom from pixels,” IEEE Trans. Games, vol. 11, no. 3,
pp. 248–259, Sep. 2019.

[33] W. H. Guss et al., “MineRL: A large-scale dataset of minecraft
demonstrations,” in Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019,
pp. 2442–2448.

[34] M. Lanctot et al., “OpenSpiel: A framework for reinforcement learning
in games,” 2019, arXiv:1908.09453.

[35] D. Zha et al., “RLCard: A platform for reinforcement learning in
card games,” in Proc. 29th Int. Joint Conf. Artif. Intell., Jul. 2020,
pp. 2442–2448.

[36] D. Billings, D. Papp, J. Schaeffer, and D. Szafron, “Opponent modeling
in poker,” in Proc. AAAI Conf. Artif. Intell., 2015, pp. 493–499.

[37] N. Bard, J. Hawkin, J. Rubin, and M. Zinkevich, “The annual computer
poker competition,” AI Mag., vol. 34, no. 2, p. 112, Jun. 2013.

[38] M. Johanson, N. Burch, R. Valenzano, and M. Bowling, “Evaluating
state-space abstractions in extensive-form games,” in Proc. Int. Conf.
Auto. Agents Multiagent Syst., 2013, pp. 271–278.

[39] S. Ganzfried and T. Sandholm, “Potential-aware imperfect-recall abstrac-
tion with earth mover’s distance in imperfect-information games,” in
Proc. AAAI Conf. Artif. Intell., 2014, pp. 682–690.

[40] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling, “Monte Carlo
sampling for regret minimization in extensive games,” in Proc. Adv.
Neural Inf. Process. Syst., 2009, pp. 1078–1086.

[41] O. Tammelin, “Solving large imperfect information games using CFR+,”
2014, arXiv:1407.5042.

[42] E. G. Jackson, “Compact CFR,” in Proc. AAAI Conf. Artif. Intell.
Workshops, 2016, pp. 366–370.

[43] M. Schmid, N. Burch, M. Lanctot, M. Moravcik, R. Kadlec, and
M. Bowling, “Variance reduction in Monte Carlo counterfactual regret
minimization for extensive form games using baselines,” in Proc. AAAI
Conf. Artif. Intell., 2019, pp. 2157–2164.

[44] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cambridge,
MA, USA: MIT Press, 1994.

[45] D. Blackwell, “An analog of the minimax theorem for vector payoffs,”
Pacific J. Math., vol. 6, no. 1, pp. 1–8, Mar. 1956.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2022.3144171

14632 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

[46] Y. Zhu and D. Zhao, “Online minimax Q network learning for two-
player zero-sum Markov games,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 3, pp. 1228–1241, Mar. 2022.

[47] Y. Zhu, D. Zhao, and X. Li, “Iterative adaptive dynamic programming
for solving unknown nonlinear zero-sum game based on online data,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 714–725,
Mar. 2017.

[48] A. Yazidi, D. Silvestre, and B. J. Oommen, “Solving two-person
zero-sum stochastic games with incomplete information using learning
automata with artificial barriers,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 2, pp. 650–661, Feb. 2023.

[49] Y. Zhao, S. Qiu, K. Li, L. Luo, J. Yin, and J. Liu, “Proximal online
gradient is optimum for dynamic regret: A general lower bound,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 7755–7764,
Dec. 2022.

[50] K. Gokcesu and S. S. Kozat, “An online minimax optimal algorithm
for adversarial multiarmed bandit problem,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 11, pp. 5565–5580, Nov. 2018.

[51] S. Yang and Y. Gao, “An optimal algorithm for the stochastic bandits
while knowing the near-optimal mean reward,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 5, pp. 2285–2291, May 2021.

[52] A. Alipour-Fanid, M. Dabaghchian, and K. Zeng, “Self-unaware
adversarial multi-armed bandits with switching costs,” IEEE Trans.
Neural Netw. Learn. Syst., early access, Sep. 29, 2021, doi:
10.1109/TNNLS.2021.3110194.

[53] N. Burch, M. Schmid, M. Moravcik, D. Morill, and M. Bowling,
“AIVAT: A new variance reduction technique for agent evaluation in
imperfect information games,” in Proc. AAAI Conf. Artif. Intell., 2018,
pp. 949–956.

[54] V. Lisy and M. Bowling, “Eqilibrium approximation quality of current
no-limit poker bots,” in Proc. AAAI Conf. Artif. Intell. Workshops, 2017,
pp. 361–366.

[55] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[56] N. Brown and T. Sandholm, “Solving imperfect-information games via
discounted regret minimization,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 1829–1836.

[57] R. Zarick, B. Pellegrino, N. Brown, and C. Banister, “Unlock-
ing the potential of deep counterfactual value networks,” 2020,
arXiv:2007.10442.

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[59] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–15.

[61] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[62] A. E. Elo, The Rating of Chessplayers, Past and Present. New York,
NY, USA: Arco, 1978.

[63] N. Brown, A. Lerer, S. Gross, and T. Sandholm, “Deep counterfac-
tual regret minimization,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 793–802.

[64] N. Yakovenko, L. Cao, C. Raffel, and J. Fan, “Poker-CNN: A pattern
learning strategy for making draws and bets in poker games using convo-
lutional networks,” in Proc. AAAI Conf. Artif. Intell., 2016, pp. 360–367.

Kai Li (Member, IEEE) received the Ph.D. degree
in pattern recognition and intelligent system from
the Institute of Automation, Chinese Academy of
Sciences, Beijing, China, in 2018.

He is currently an Associate Professor with the
Institute of Automation, Chinese Academy of Sci-
ences. His main research interests are large-scale
imperfect-information games and deep multiagent
reinforcement learning.

Hang Xu received the bachelor’s degree in engineer-
ing from Wuhan University, Wuhan, China, in 2020.
He is currently pursuing the Ph.D. degree in pattern
recognition and intelligent systems with the Insti-
tute of Automation, Chinese Academy of Sciences,
Beijing, China.

His research interests include computer game and
reinforcement learning.

Enmin Zhao received the bachelor’s degree in engi-
neering from Tsinghua University, Beijing, China,
in 2018. He is currently pursuing the Ph.D. degree
in pattern recognition and intelligent systems with
the Institute of Automation, Chinese Academy of
Sciences, Beijing.

His research interests include computer poker and
deep reinforcement learning.

Zhe Wu received the bachelor’s degree in engi-
neering from Shandong University, Jinan, China, in
2019. He is currently pursuing the master’s degree
in pattern recognition and intelligent systems with
the Institute of Automation, Chinese Academy of
Sciences, Beijing, China.

His research interests include opponent modeling
and meta learning.

Junliang Xing (Senior Member, IEEE) received the
dual B.S. degree in computer science and mathemat-
ics from Xi’an Jiaotong University, Xi’an, Shaanxi,
China, in 2007, and the Ph.D. degree in computer
science from Tsinghua University, Beijing, China,
in 2012.

He is currently a Professor with the Department
of Computer Science and Technology, Tsinghua
University. His research interests include computer
vision problems related to human faces and com-
puter gaming problems in imperfect information
decision.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 28,2024 at 02:01:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2021.3110194

