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A B S T R A C T

Age estimation from face images is an important yet difficult task in computer vision. Its main difficulty lies in
how to design aging features that remain discriminative in spite of large facial appearance variations.
Meanwhile, due to the difficulty of collecting and labeling datasets that contain sufficient samples for all
possible ages, the age distributions of most benchmark datasets are often imbalanced, which makes this
problem more challenge. In this work, we try to solve these difficulties by means of the mainstream deep
learning techniques. Specifically, we use a convolutional neural network which can learn discriminative aging
features from raw face images without any handcrafting. To combat the sample imbalance problem, we propose
a novel cumulative hidden layer which is supervised by a point-wise cumulative signal. With this cumulative
hidden layer, our model is learnt indirectly using faces with neighbouring ages and thus alleviate the sample
imbalance problem. In order to learn more effective aging features, we further propose a comparative ranking
layer which is supervised by a pair-wise comparative signal. This comparative ranking layer facilitates aging
feature learning and improves the performance of the main age estimation task. In addition, since one face can
be included in many different training pairs, we can make full use of the limited training data. It is noted that
both of these two novel layers are differentiable, so our model is end-to-end trainable. Extensive experiments on
the two of the largest benchmark datasets show that our deep age estimation model gains notable advantage on
accuracy when compared against existing methods.

1. Introduction

Age estimation, i.e., predicting the age from a face image, has long
been an active research topic in computer vision, with many applica-
tions such as age-based face retrieval [1], precision advertising [2],
intelligent surveillance [3], human-computer interaction (HCI) [4] and
internet access control [2].

The typical methodology for age estimation from face images is to
extract carefully designed handcrafted features representing the aging
information and subsequently solve an age estimator learning problem.
Widely used features include local binary pattern (LBP) [5] and Gabor
features [6], with some further processing models like the anthropo-
metric model [7], AGing pattErn Subspace (AGES) [8], and the age
manifold model [9]. To learn an age estimator, most approaches use
either a multi-class classification framework or a regression framework.
In multi-class classification the age values are treated as independent

labels and a classifier is learnt to predict the age [1,10,8]. However, age
estimation is more of a regression problem than a multi-class
classification problem due to the continuity of the age space. Based
on this observation, many regression based approaches are proposed
[9,11–13].

Although these existing methods achieve promising results, the age
estimation problem is far from being solved. The main challenges come
from the large appearance variations of face images. Fig. 1 shows some
face images from the benchmark datasets used in this work. We can see
that the face images may be obtained from people of different races,
genders, and under conditions of large pose variations, bad illumina-
tion, and heavy makeups, which make it difficult to manually design
aging features that are robust to all these disturbances. In addition, due
to the difficulty of collecting and labeling datasets that contain
sufficient samples for all possible ages, the age distributions of most
available benchmark datasets in the literature are imbalanced which
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makes accurate age estimation even harder.
In this work, we try to solve the aforementioned challenges in

human age estimation. Instead of manually design features, we use a
convolutional neural network (CNN) to extract effective and discrimi-
native aging features from raw input face images without any hand-
crafting. To combat the sample imbalance problem, we propose a novel
cumulative hidden layer (Section 3.1). In contrast with the mainstream
CNN models which directly map the last hidden layer to the output
layer, we insert a cumulative hidden layer before the output layer. This
cumulative hidden layer is supervised by a point-wise cumulative signal
which encodes the target age labels continuously. Thanks to this
cumulative hidden layer, our model can not only learn from one face
itself but also from the faces with neighbouring ages and thus alleviate
the sample imbalance problem.

In order to learn more effective aging features, we further propose a
novel comparative ranking layer (Section 3.2) which is supervised by a
pair-wise comparative signal, i.e., who is older. The intuition behind
this is that it is difficult to tell accurately the age of one face, but it is
relatively easy to tell who is older, given two faces. For example, in
Fig. 1, it is hard to guess the exact age of these faces, but it is relatively
easy to see that the faces to the right of the figure are older than the
faces to the left. This comparative signal helps our model to learn the
general concept of “old and young”. This concept is valuable for the
exact age estimation task. We argue that this auxiliary pair-wise signal
facilitates aging feature learning and improves the performance of the
main age estimation task. As one face image can be used in many
different pairs, we can make full use of the training data. It's worth
noting that both the point-wise and pair-wise supervision signals can
be obtained directly from the age labels, so our model does not need
any additional manual labeling.

There are three main contributions in this work:

1. We propose a novel cumulative hidden layer which alleviates the
sample imbalance problem and thus improves age estimation. To the
best of our knowledge, this is the first time that a new layer for the
CNN has been designed to combat the sample imbalance problem in
human age estimation literatures.

2. We propose a novel comparative ranking layer which facilitates
aging feature learning and thus further improve age estimation. We
believe that this is the first work that explicitly take account of the
pair-wise information between faces during training for human age
estimation.

3. By incorporating these two novel layers, we obtain a deep age
estimation model which outperforms by a large margin all previous
age estimation methods on two of the largest benchmark datasets.

2. Related work

Human age estimation has been studied for decades in the
computer vision community. Previous works on age estimation are
mainly focused on the manual design of robust ageing features. Typical
features designed specifically for age estimation include facial features
and wrinkles [7], the learned AGES (AGing pattErn Subspace) [8]

features, as well as the biologically inspired features (BIF) [13]. Other
more general features devised for texture description are also widely
used for age estimation, for example the LBP feature [5,14], the Gabor
feature [6], etc.

Based on these carefully designed handcrafted facial aging features,
much attention was paid to the age estimator learning step: age
estimation by classification or regression. Classification models, e.g.li-
near SVM [13], Probabilistic Boosting Tree [15], Fuzzy LDA [6], or
regression models like Support Vector Regression [13], Kernel Partial
Least Squares [16], Neural Network [17] and Semidefinite
Programming [18] are all designed to estimate age.

Although a lot of algorithms have achieved promising age estima-
tion results, many challenges still remain in this problem. One of the
most prominent challenges is the sample imbalance problem. There are
several attempts [19–21] to alleviate this problem which are based on
the concept of label distribution learning (LDL) [22]. The label
distribution can be seen as an extension of the one-hot encoding in
the classic multi-class classification problem. These LDL based age
estimation methods represent each target age with a label distribution
vector which can capture the correlations between different ages and
have been shown to alleviate the sample imbalance problem to a
certain extent. Different from these LDL based methods which first
design handcrafted aging features and then train the age classifier
separately, our model with the proposed cumulative hidden layer
learns the aging features and the age regressor in an end-to-end
manner, which is more effective to alleviate the sample imbalance
problem.

Recently, deep learning models, especially convolutional neural
networks (CNNs), have achieved great successes in many computer
vision tasks [23–30]. One of the most attractive merits of deep learning
is the automatic learning of the features and the classifier at the same
time. Although CNNs have been successful in many computer vision
problems, there are only a very few studies on using CNNs to perform
age estimation [31–33]. Some of these studies are focused on other
objectives, e.g., providing a benchmark dataset [31], or exploiting
complicated network architectures, such as the multi-scale architecture
with 23 sub-networks in [32], and the tree-structured architecture with
36 local sub-networks in [33]. Unlike these existing complicated CNN
based models which have many hyper-parameters to tune and which
are hard to implement, our model is based on the widely used AlexNet
[24] which is easy to reproduce.

In contrast with the existing models, which only use the point-wise
age label of one face as supervision signal, our model also exploits the
proposed pair-wise comparative supervision signal between two faces
and thus outperforms existing models significantly. Pair-wise super-
vision signal is commonly adopted in hashing. Representative pair-wise
supervision based hashing methods include sequential projection
learning for hashing [34], minimal loss hashing [35], supervised
hashing with kernels [36], two-step hashing [37], fast supervised
hashing [38] and deep hashing [39]. The pair-wise supervision signal
in hashing methods is used to indicate whether the semantic labels are
similar between two items. In contrast, our pair-wise comparative
supervision signal is used to indicate the order between the ages of two

Fig. 1. Examples of faces in the two benchmark datasets used in this work. Top row: the Morph II dataset. Bottom row: the WebFace dataset.
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faces. The purpose of the pair-wise supervision signal in hashing is to
learn compact semantic similarity preserving binary codes. While our
pair-wise comparative supervision signal is used to facilitate the aging
feature learning.

3. Methodology

In this section we introduce our model, called Deep Cumulatively
and Comparatively (D2C) supervised age estimation model. Our D2C
model simultaneously learns aging features and age estimator in an
end-to-end framework. The D2C model exploits our proposed cumu-
lative hidden layer and comparative ranking layer which are supervised
by the point-wise cumulative and pair-wise comparative signals,
respectively. In the following, we will first introduce the cumulative
hidden layer and the comparative ranking layer, and then describe in
detail the architecture of the entire D2C age estimation model.

3.1. Cumulative hidden layer

Age estimation can be directly formulated as a multi-class classi-
fication problem. This multi-class classification formulation assumes
that the images obtained at one particular age are independent of the
images obtained at neighbouring ages. In fact, the images obtained at
nearby ages are strongly correlated. Based on this observation, it is
more natural to formulate age estimation as a regression problem.

Traditional CNN based age regression models directly map the
features extracted by the network to the age label (cf. Fig. 2(a)).
However, in real-world, usually the age distribution of collected faces is
imbalanced. The imbalanced training data causes difficulties in learn-
ing the regressor directly since there are only a few samples or even no
sample available for certain ages.

To combat the sample imbalance problem, we insert a novel
cumulative hidden layer (CHL) before the age output layer (cf.
Fig. 2(b)). Our CHL is initially inspired by [40]. In [40], the
handcrafted features are designed first and the regressor is learnt
separately, while our model learns the aging features and the age
regressor in an end-to-end manner. This CHL is supervised by a binary
cumulative signal which is obtained directly from the age label.
Concretely, suppose given a set of N training face images
x l l K i N{ , }, ∈ {1, 2,…, }, = 1, 2,…,i i i , where xi denotes the i-th face
image, li denotes its age label, and K is the number of different ages in
the training set. For the i-th face image xi with age label li, we can
construct its corresponding K-dimensional binary cumulative signal
CuSi from li as follows:

⎧⎨⎩
k l
k l

CuS = 1, ≤
0, > ,i

k i

i (1)

where k K= 1, 2,…, , and CuSi
k denotes the k-th element of CuSi.

This cumulative signal has one appealing property: the cumulative

signals of neighbouring ages are more similar than those further apart
which is consistent with the fact that faces with neighbouring ages are
generally more similar in appearance than faces with widely separated
ages. For example, in Fig. 3, the 10-year-old face is more similar to the
12-year-old face than to that of the 40-year-old face, and the
cumulative signal of the 10-year-old face is also more similar to that
of the 12-year-old face (2-bit difference) than that of the 40-year-old
face (30-bit difference). This nice property is of help in estimating the
ages, especially when the age distribution is imbalanced, because
similar ages can be used to partially depict their neighbouring ages
that are few or absent in the learning and thus alleviate the sample
imbalance problem. Based on the analyses above, we can see that our
CHL supervised by this cumulative signal can not only capture the
correlations between faces of different ages but also alleviate the
sample imbalance problem, both of which are beneficial for accurate
age estimation.

For an input image xi along with its target cumulative signal CuSi

and age label li, we use ϕ ∈i
D to denote the aging feature of xi learned

by the CNN. Then the output of the CHL is:

ϕo W b= + ,i i (2)

where W ∈ K D× , b ∈ K are the parameters of the CHL. The input to
the final age output layer is the output of the CHL, so the predicted age
is calculated as follows:

l bw o= + ,∼
i

T
i (3)

where w ∈ K , b ∈ are the parameters of the output layer. We want
to minimize the difference between the output of CHL oi and the target
cumulative signal CuSi. At the same time, we want to minimize the
difference between the predicted age l∼i and the target age li.
Consequently, the overall loss function of the model in Fig. 2(b) is
defined as follows:

α l l α oL = Loss + Loss = | − | + ∥ − CuS ∥ ,∼
i i i i i i i

age CHL
1 (4)

where Lossi
CHL is the loss of the CHL with output oi, Lossi

age is the loss of

the age output layer with the predicted age l∼i, and α is the hyper-
parameter to tune the importance of each loss. For simplicity, we
denote the loss function for a single face image in Eq. (4). The total loss
is averaged over all face images in a batch during training. It's worth
noting that unlike other regression based age estimation methods
which always use L2-norm to calculate the loss, our model uses L1-
norm in Eq. (4) which is more robust to outliers.

Our model with this novel CHL is similar to the very successful
attribute based models used in many computer vision problems [41–
43]. Structurally, these attribute based models are two-stage mapping,
i.e., they first map the visual features to the attribute space and then
map this attribute space to the label space. The attribute space is design
to capture the correlations between different classes, so the model can
be learned indirectly even if there is little or no samples of a class.
Similarly, our deep age estimation model first maps the aging features
to the cumulative space by using the CHL, and then maps this
cumulative space to the output age label space. The cumulative space
captures the correlations between different ages and thus alleviates the
sample imbalance problem effectively.

AgeFace Feature Learning
Network

Face

Cum
ula�ve

Hidden
layer Age

Feature Learning
Network

Fig. 2. Schematic diagrams of the traditional CNN based age regression model (top),
and our CNN based age regression model with the proposed cumulative hidden layer
(bottom). The feature learning network is a series of convolutional layers, pooling layers
and fully connected layers.

1 0

10A

12B

40C

Fig. 3. Three example face images (left), their age labels (middle) and the corresponding
cumulative signals (right). It is apparent that A and B are similar, but C is very different
from A and B. This is consistent with the differences in their cumulative signals.
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3.2. Comparative ranking layer

It is worth noting that learning a function from face images to ages
is a relatively difficult task. Even human beings find it difficult to
estimate age accurately from a face image, but it is relatively easy to tell
who is older between two face images. As shown in Fig. 1, it is difficult
to tell the exact age of each face, but we can relatively easy to see that
faces on the right are older than the faces on the left even though we do
not know the exact ages of those faces. Based on this observation, we
propose a novel comparative ranking layer (CRL) which is supervised
by a pair-wise comparative signal, i.e., who is older. This auxiliary
comparative signal helps the model to learn the general concept of “old
and young”. This concept is valuable for the exact age estimation task.

The schematic diagram of the network with our proposed CRL is
shown in Fig. 4. Given a pair of face images x x( , )i j along with their
ground-truth age labels l l( , )i j , the comparative signal CoSij is defined as
follows:

⎧
⎨⎪
⎩⎪

if l l
if l l
if l l

CoS =
1, >
0.5, =
0, <

.ij

i j

i j

i j (5)

We can think of CoSij as the target probability of xi is older than xj, i.e.,
CoS = 1ij represents that xi is older than xj, CoS = 0ij represents that xj
is older than xi, and CoS = 0.5ij represents that xi is the same age as xj.
This pair of images x x( , )i j go though two feature extraction networks
with shared weights, this procedure maps the face images onto D-
dimensional feature vectors φ φ( , )i j . The aim of the CRL is to learn a

ranking function  f : ↦D that shows who is older, e.g., φ φf f( ) > ( )i j
indicates that xi is older than xj. Based on this consideration, we choose
the CRL to be a fully connected layer with a single output neuron, i.e.,

φ φf bw( ) = + ,i
T

i (6)

where w ∈ D, b ∈ are the parameters of the CRL. After we obtain
the scores of two face images, i.e., φf ( )i and φf ( )j . In a similar way to
[44], we map from these scores to the posterior probability
p P x x= ( ≻ )ij i j using a logistic function, i.e.,

p P x x
e

= ( ≻ ) = 1
1 +

,φ φij i j f f−( ( )− ( ))i j (7)

where x x≻i j denotes that xi is older than xj. The definition of pij in Eq.
(7) has a nice consistency property, i.e., given p > 0.5ij and p > 0.5jk ,
based on the definition of Eq. (7), we can derive p > 0.5ik . In other
words, when x x≻i j and x x≻j k then x x≻i k.

We use the binary cross entropy loss function to calculate the loss
for a face image pair x x( , )i j along with the target CoSij:

p pLoss = −CoS log − (1 − CoS )log(1 − ).ij ij ij ij ij
rank

(8)

Fig. 5 shows the value of Lossij
rank as a function of φ φf f( ) − ( )i j for the

three values of the target CoSij. We can see that when the target
CoS = 1ij (0), i.e., xi is older (younger) than xj, minimizing the loss in
Eq. (8) pushes φf ( )i to be larger (smaller) than φf ( )j which meets our
requirements that the score output by f can reflect who is older. Note
that when the target CoS = 0.5ij , i.e., xi is the same age as xj. The loss in
Eq. (8) becomes symmetric (the green line in Fig. 5) and with its
minimum at the origin, i.e., φ φf f( ) = ( )i j . This gives us a principled
way of training on face pairs that are known to have the same age.

It is noteworthy that not all the training face pairs have the same
degree of difficulty. For example, suppose given two face pairs x x( , )a b
and x x( , )c d , where la=50, lb=10, lc=30, and ld=25. It is easier to judge
x x≻a b than to judge x x≻c d . We use l l| − |i j to measure the difficulty of a
face pair x x( , )i j . Inspired by the concept of “curriculum learning”
proposed in [45], we use the easy face pairs at the beginning and
gradually increase the difficulty of the face pairs. By using this strategy
our model can gradually learn more complex and discriminative aging
features from the subtle facial difference between face pairs which are
critical to accurate age estimation. In addition, we can make full use of
the small amount of face images with specific age since one face image
can be used in a lot of different training pairs, and thus alleviate the
sample imbalance problem to some extent.

It is noted that our comparative ranking layer does not take account
of the exact age of each face. Instead, it only uses the relative order
between faces. This information is more stable than exact age values.
Compare to the exact age label supervision signal which only contains
the information of one face, this comparative signal considers the pair-
wise information between two faces which provides complemental
information. By training with face pairs, the model learns more
discriminative aging features by directly learning from the difference
between faces. As is mentioned before, it is easier to distinguish who is
older between two faces than to tell the exact age of one face. We argue
that this related and relatively easy task is beneficial to the aging
feature learning and thus improve the main exact age estimation task.
This is also been verified in other works such as [30,46] that some
related and easy tasks can boost the performance the main difficult
task.

3.3. D2C network architecture

Fig. 6 shows the entire end-to-end architecture of our deep
cumulatively and comparatively (D2C) supervised age estimation
model which incorporates the proposed cumulative hidden layer
(CHL) and comparative ranking layer (CRL) discussed above. Note
that there are two CNNs in Fig. 6, however, these two CNNs are
identical in that they have the same structure and parameters. We use
two CNNs to get a better illustration for the comparative ranking layer
which is based on a pair of face images. We exploit the widely used
AlexNet [24] as the “root” net (the gray part in Fig. 6). Other modern
CNN architectures [26,47] can also be used as the root net, but a
comparison of different network architectures is not the focus of this
work. Next, we describe in detail our D2C age estimation model.

The root net is the gray network in Fig. 6. The network has five

Compara�ve
Ranking

Layer

Feature Learning 
NetworkFace2

Compara�ve
Ranking

Layer

Feature Learning 
NetworkFace1

LossShared

Fig. 4. Schematic diagram of our proposed comparative ranking layer.

Fig. 5. The value of Lossij
rank for three values of the target CoSij.

K. Li et al. Pattern Recognition 66 (2017) 95–105

98



convolutional layers and two fully connected layers. We use Rectified
Liner Units (ReLu) as the activation function. The first convolutional
layer (Conv1) consists of 96 kernels with size of 11×11, followed by a
local response normalization (LRN) layer and a 3×3 max pooling (MP)
layer. The second convolutional layer (Conv2) has 256 5×5 kernels,
followed by a LRN layer and a 3×3 MP layer. The third convolutional
layer (Conv3) has 384 3×3 kernels. It is followed by the fourth
convolutional layer (Conv4) with 384 3×3 kernels. The fifth convolu-
tional layer (Conv5), with 256 3×3 kernels, is followed by a 3×3 MP
layer. The convolutional layers are followed by two 4096-dimensional
fully connected layers (FC6 and FC7). The FC7 layer is followed by the
cumulative hidden layer discussed in Section 3.1. The dimension of the
cumulative hidden layer is equal to the number of different ages (#Age)
in the training data. The last layer outputs the predicted age.

Similar to the auxiliary intermediate supervision branch in [47], the
input to the rank net (the blue part in Fig. 6) is obtained from the
Conv4 output of the root net. This choice is also based on the
consideration that the main age estimation task and the auxiliary
ranking task are not of the same difficulty. The main age estimation
task is a difficult task and thus requires the highest-level features.
Compared to the main age estimation task, the ranking task introduced
by the comparative layer is a relatively easy task (i.e., binary classifica-
tion) which requires slightly lower-level features. This network passes
the input through a 3×3 MP layer followed by two 4096-dimensional
fully connected layers (R_FC1 and R_FC2). The resulting data is
passed to the comparative ranking layer discussed in Section 3.2.

The overall loss of our D2C age estimation model for a pair of input
face images x x( , )i j with the target age labels l l( , )i j , the target cumula-
tive signals (CuS , CuS )i j , and the target comparative signal CoSij is
defined as the weighted sum of Eqs. (4) and (8), i.e.,

∑ ∑α βLoss = Loss + Loss + Loss ,ij
m i j

m
m i j

m ij
overall

= ,

age

= ,

CHL rank

(9)

where α, β are hyper-parameters to tune the importance of each loss.
Lossage and LossCHL are equally important since they are the loss
functions of the main age estimation task. Therefore, we fix α = 1
throughout the experiments. Lossrank is the loss function of the auxiliary
task which facilitates aging feature learning during training and β is
used to balance this auxiliary task and the main age estimation task.

Therefore, we only adjust the value of β in our experiments. We choose
β = 0.5 based on a held-out validation set. Unlike the mainstream CNN
architectures, our D2C model is not a chain-like net. However, it is
based on a directed-acyclic graph which can be trained end-to-end
from scratch using back-propagation and stochastic gradient descent.
Since our main purpose is age estimation, the rank net is only used to
facilitate aging feature learning which is easier than and converges
faster than the main age regression task. Based on this observation, we
early stop the rank net which is similar to the procedure proposed in
[30] to avoid overfitting. Specifically, we remove Lossij

rank in Eq. (9)
when its value no longer decreases. At testing time, we only use the
network inside the red dashed line in Fig. 6 to predict the age of an
input face. This procedure is very efficient because it only requires one
forward pass through the network.

4. Experiments

In this section, we first describe the age estimation benchmark
datasets used in this work, the age estimation performance evaluation
metric, and the experimental settings. Then, we will conduct detailed
experiments to validate the effectiveness of our proposed cumulative
hidden layer and comparative ranking layer. Finally, we will compare
our D2C age estimation model with the state-of-the-art age estimation
methods.

4.1. Datasets and experimental settings

4.1.1. Datasets
There are many datasets for age estimation in the literature

[48,9,49]. Most of these datasets, however, are relatively small. Since
training a good deep neural network generally requires a large amount
of training data, we select two of the largest benchmark datasets, i.e.,
the Morph II [50] dataset and the WebFace [51] dataset as our
testbeds.

Morph II dataset: The Morph II dataset contains about 55,000
face images of more than 13,000 subjects with ages ranging from 16 to
77 years old. Morph II is a multi-ethnic dataset. It has about 77% Black
faces and 19% White faces, while the remaining 4% includes Asian,
Hispanic, Indian, and Other. We follow the previous study [16], and

Fig. 6. The end-to-end deep architecture of our D2C age estimation model.
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split this dataset into three non-overlapping subsets S1, S2 and S3 (cf.
Table 1). In all the experiments the training and testing are repeated
twice: 1) training on S1, testing on S2+S3 and 2) training on S2, testing
on S1+S3. This training and testing set split protocol has become the
standard for the Morph II age estimation dataset.1

WebFace dataset: The WebFace dataset contains 59,930 face
images. The ages range from 1 to 80 years old. The WebFace dataset is
also a multi-ethnic dataset. In contrast with the Morph II dataset, this
dataset is captured in the wild. The images contain large pose and
expression variations, which make this dataset much more challenging.
Following [51], we conduct experiments on this dataset using a four-
fold cross validation protocol.

Fig. 1 shows some example face images in these two datasets. As we
can see, both datasets are very challenging and thus can serve as very
good benchmarks for evaluating the performance of different age
estimation methods.

4.1.2. Evaluation metric

The most widely used evaluation metric for age estimation in the
literature is the Mean Absolute Error (MAE), which is defined as
follows,

∑
N

y yMAE = 1 − ,
i

N

i i
=1 (10)

where N is the number of testing samples, yi is the ground-truth age
and yi is the predicted age of the i-th sample. Smaller MAE values mean
better age estimation performance.

4.1.3. Experimental settings

The face images in the datasets are preprocessed in a standard way,
i.e., the faces in the images are detected and aligned, then cropped and
normalized to 256×256. Fig. 7 shows some examples of the original
images and their corresponding preprocessed versions. In all the
following experiments, we use the Caffe [52] toolbox, which provides
a flexible framework to develop new deep learning models, and makes
our work easy to reproduce. All the model protocol files and training
results in our experiments will be released in the Caffe model zoo.2 We
train all the networks using mini-batch (set to 256) stochastic gradient
descent with momentum (0.9) and weight decay (5 × 10−4). For all
fully-connected layers we use a dropout ratio of 0.5. We use data
augmentation similar to [24], i.e., randomly cropping of 227×227
pixels from the 256×256 input face image, then randomly flipping it
before feeding it to the network. The initial learning rate is 10−3 which
is divided by 10 when the training curve reaches a plateau. These
hyper-parameters are chosen based on the validation set. We found
that all networks converge well under these settings, so we use the
same hyper-parameters for different models to make fair comparisons.

4.2. Analyses of our novel cumulative hidden layer

To demonstrate the effectiveness of our cumulative hidden layer, we

train two networks, the first without and the second with this layer. The
networks are denoted by Netbase and NetCHL respectively. The age
estimation results of these two models on the Morph II and WebFace
datasets are shown in Tables 2, 3. We can clearly see that NetCHL
outperforms Netbase on both datasets. These experimental results
validate the effectiveness of our cumulative hidden layer for age
estimation.

4.2.1. Missing data experiments

In real-world, usually the age distribution of face images collected is
imbalanced or say incomplete with some ages lost. To more explicitly
demonstrate that our cumulative hidden layer can alleviate this
problem, we evaluate Netbase and NetCHL while making the training
data more and more imbalanced. To simulate such a scenario, we
remove all the face images every T years, where T ∈ {6, 5, 4}, so the
training data become more and more imbalanced as T decreases. We
retrain Netbase and NetCHL on both datasets at different values of T.
Tables 4, 5 show the age estimation results. It is evident from these two
tables that when more training data are removed and the training data
become more and more imbalanced, the performance of both Netbase
and NetCHL degrades. However, NetCHL performances consistently
better than Netbase on both datasets under different values of T. These
results show that our proposed cumulative hidden layer dose alleviate
the sample imbalance problem and therefore improve the age estima-
tion performance.

4.2.2. More parameters lead to better performance?

The NetCHL has a total of 9 learnable layers. On the other hand, the
Netbase has 8 learnable layers. As increasing the number of learnable
parameters can enlarge the model capacity and in some cases lead to
better performance, one could argue that the performance improve-
ment in our NetCHL comes merely from the additional parameters
introduced by the cumulative hidden layer. To disprove this, we train
another model Netbase

Aug by augmenting Netbase with an additional layer
such that the number of parameters of Netbase

Aug is the same as NetCHL. We
found that the additional layer leads to a degradation rather than to an
improvement in performance for Netbase: the MAE increases from 3.31
to 3.32 on the Morph II dataset. Similarly, the MAE increases from
6.34 to 6.36 on the WebFace dataset. This suggests that the gain in
performance of NetCHL over Netbase derives from our proposed cumu-
lative hidden layer and the cumulative supervision signal rather than
from an increased number of parameters.

4.2.3. L2-norm vs. L1-norm

The L2-norm is widely used in regression based age estimation
problem since it has very nice mathematical properties such as
convexity and continuously differentiable. However, the L2-norm is
sensitive to errors in the labels. Since label errors are inevitable in real
world datasets, we use the more robust L1-norm to calculate the loss in
Eq. (4). To demonstrate the superiority of the L1-norm for age
estimation, we train another model NetCHL

L2 using the L2-norm in the
loss function. Compared with NetCHL which uses L1-norm in the loss
function, the MAE of NetCHL

L2 increases from 3.16 to 3.18 on the Morph
II dataset, and from 6.12 to 6.53 on the WebFace dataset. Since the
WebFace dataset is automatically compiled from images on the Web
and contains many more label errors than the Morph II dataset, the
performance gap between NetCHL and NetCHL

L2 is much larger on the
WebFace dataset than on the Morph II dataset. This clearly demon-
strates the effectiveness of L1-norm for age estimation when faced with
a noisy data set. We can also see that even though the Morph II dataset
was compiled in a controlled environment and has few label errors,
NetCHL still performs slightly better than NetCHL

L2 on this dataset. This is
because MAE is the evaluation metric for age estimation (Eq. (10))

Table 1
The number of images of the three splits of the Morph II dataset.

1 http://csee.wvu.edu/~gdguo/Data/AgingDataPartition.htm
2 https://github.com/BVLC/caffe/wiki/Model-Zoo
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which is defined using the L1-norm, so we can directly optimize this
metric by using the L1-norm as a loss function. This is also the
philosophy of deep learning, i.e., direct optimization of what you want
can always improve the performance. Some people may concern that
the loss function in Eq. (4) has many indifferentiable points which may
not be easy to optimize. In fact, with recent developments in optimizing
non-smoothing functions like ReLu [24] and PReLu [25] in the deep
learning framework, the loss function in Eq. (4) can be optimized
effectively using the stochastic gradient descent algorithm. In order to
make this clear, we plot the validation MAE of NetCHL and NetCHL

L2

during training on the WebFace dataset in Fig. 8 (we don't plot the
training loss because the training loss based on L1-norm and L2-norm
can't be directly compared). We can see that NetCHL converges without
any difficulties and obtains consistently better validation performance
than NetCHL

L2 during training. These experimental results and analyses
validate the effectiveness of our choice of using L1-norm as the loss
function for age estimation.

4.2.4. Comparisons with label distribution learning based methods

Label distribution learning (LDL) based methods are very effective
to deal with the sample imbalance problem in age estimation. Different
from the classic one-hot encoding based multi-class classification for
age estimation, the LDL based methods represent each age label with a
label distribution vector which captures the correlations between
different ages and thus can alleviate the sample imbalance problem
to some extent. In order to compare our NetCHL with these LDL based
methods, we train two other networks NetCLC and NetLDL. NetCLC is the
classic one-hot encoding multi-class classification based age estimation
network, and NetLDL is an age estimation network based on the LDL
proposed by Geng et al. [19]. The age estimation results of these three
networks on both datasets are shown in Tables 6, 7. We can see that
NetLDL outperforms NetCLC on both datasets. This is because compared
with NetCLC which treats each age label independently, NetLDL captures
the correlations between different ages and improves the age estima-
tion performance. We can also see that our NetCHL with the proposed
cumulative hidden layer obtains better results than NetLDL. There are
two reasons to explain these results. First, on the whole, our NetCHL is a
regression based age estimation method, while NetLDL is a classification
based method. Compared to the classification based formulation, the

Fig. 7. Examples of the original face images and their corresponding preprocessed versions after face detection and alignment. Left two: the Morph II dataset. Right two: the WebFace
dataset.

Table 2
The age estimation results of Netbase and NetCHL on the Morph II dataset using the
training and testing set split protocol in Table 1.

Method S2+S3 MAE S1+S3 MAE Average MAE

Netbase 3.31 3.30 3.31
NetCHL 3.15 3.16 3.16

Table 3
The age estimation results of Netbase and NetCHL on the WebFace dataset using the four-
fold cross validation protocol.

Method Fold1 MAE Fold2 MAE Fold3 MAE Fold4 MAE Average MAE

Netbase 6.39 6.33 6.32 6.31 6.34
NetCHL 6.13 6.14 6.07 6.14 6.12

Table 4
The age estimation results of Netbase and NetCHL on the Morph II dataset at different T
values.

Method T=6 MAE T=5 MAE T=4 MAE

Netbase 3.54 3.60 3.87
NetCHL 3.33 3.37 3.50

Table 5
The age estimation results of Netbase and NetCHL on the WebFace dataset at different T
values.

Method T=6 MAE T=5 MAE T=4 MAE

Netbase 6.64 6.86 7.02
NetCHL 6.39 6.50 6.70

Fig. 8. Validation MAE of NetCHL and NetCHL
L2 observed during training on the WebFace

dataset.

Table 6
The age estimation results of NetCLC, NetLDL and NetCHL on the Morph II dataset using
the training and testing set split protocol in Table 1.

Method S2+S3 MAE S1+S3 MAE Average MAE

NetCLC 3.57 3.64 3.61
NetLDL 3.36 3.40 3.38
NetCHL 3.15 3.16 3.16
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regression based formulation is more favorable owing to the inherent
characteristic of age estimation, i.e., the age of an individual is
measured by the time passed from the individual's birth, and thus is
a continuous process. Second, compared with NetLDL using the
Kullback-Leibler (KL) divergence as the loss function, our NetCHL is
an end-to-end framework using MAE as the loss function which can
directly optimize the evaluation metric of age estimation.

4.3. Analyses of our novel comparative ranking layer

In this section we demonstrate the effectiveness of our proposed
comparative ranking layer in improving age estimation performance. It
is noted that our NetCHL has already obtained state-of-the-art results on
both datasets. A question arises: can the comparative ranking layer
further improve age estimation? To answer this question, we train our
D2C age estimation model NetD2C by incorporating both the cumulative
hidden layer and the comparative ranking layer (Fig. 6). The results are
shown in Tables 8, 9. From these tables, we can see that NetD2C is better
than NetCHL on both datasets. This shows that our proposed compara-
tive ranking layer indeed can further improve the age estimation
performance.

In order to better illustrate the role of our comparative ranking
layer, we plot the age estimation MAE loss observed during training on
the Morph II and the WebFace datasets in Figs. 9 and 10. We can see
that the NetD2C, which includes the comparative ranking layer, can find
better minimum than NetCHL without this layer. This validates our
hypothesis that the comparative ranking layer can facilitate the aging
feature learning process.

Some age estimation results obtained from NetCHL and NetD2C are
shown in Fig. 11. We can see that even though the left face is younger
than the right face in each pair by ground truth, NetCHL predicts the
opposite in these examples. In contrast, thanks to our proposed
comparative ranking layer which explicitly consider the pair-wise
information between faces during training, so the NetD2C can learn
discriminative aging feature from the subtle facial difference between
face pairs with similar ages and thus makes more accurate predictions
than NetCHL. All the above results and analyses validate the effective-
ness of our comparative ranking layer for human age estimation.

4.3.1. Sensitiveness of the hyper-parameter β

As show in Eq. (9), the hyper parameter β is used to balance the
auxiliary ranking loss and the main age estimation loss. It is known
that adjusting hyper-parameters for hybrid loss terms are critical for
heterogeneous learning goals. Based on this consideration, we conduct
experiments to investigate the sensitiveness of β on the age estimation
results. Specifically, we vary β from 0 to 1 to learn different models, the
validation MAE of these models on both datasets are shown in Figs. 12
and 13. It is very clear that the models using the comparative ranking
layer outperform the models without using it (in this case β = 0). We
can also observe that the validation performance of our D2C model
remains largely stable across a wide range of β. These experimental
results and analyses demonstrate that our D2C age estimation model is
insensitive to the value of β.

4.4. Comparison with the state-of-the-art methods

Tables 10, 11 compare our D2C age estimation model NetD2C with
several recently published methods on the Morph II and the WebFace
datasets. Our D2C model outperforms all the other state-of-the-art

Table 7
The age estimation results of NetCLC, NetLDL and NetCHL on the WebFace dataset using
the four-fold cross validation protocol.

Method Fold1 MAE Fold2 MAE Fold3 MAE Fold4 MAE Average MAE

NetCLC 6.67 6.84 6.72 6.79 6.76
NetLDL 6.46 6.47 6.34 6.35 6.41
NetCHL 6.13 6.14 6.07 6.14 6.12

Table 8
The age estimation results of NetCHL and NetD2C on the Morph II dataset using the
training and testing set split protocol in Table 1.

Method S2+S3 MAE S1+S3 MAE Average MAE

NetCHL 3.15 3.16 3.16
NetD2C 3.06 3.05 3.06

Table 9
The age estimation results of NetCHL and NetD2C on the WebFace dataset using the four-
fold cross validation protocol.

Method Fold1 MAE Fold2 MAE Fold3 MAE Fold4 MAE Average MAE

NetCHL 6.13 6.14 6.07 6.14 6.12
NetD2C 6.03 6.07 5.99 6.06 6.04

Fig. 9. Loss observed during training on the Morph II dataset.

Fig. 10. Loss observed during training on the WebFace dataset.
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methods on both datasets by a large margin. On the Morph II dataset,
our D2C model reduces the age estimation MAE by 0.55 years which is
a 15.2% relative improvement. To the best of our knowledge, this is the
first time an MAE value near to 3 years has been obtained on this
dataset.

On the WebFace dataset, our D2C model improves on the previous
best results by 1.68 years which is about a 21.8% relative improvement.
Since the WebFace dataset is compiled from faces in the wild, there
have been fewer experiments on this challenging dataset. We compared
the results from our model with all the published results that we could
find for this dataset, including the latest in [33]. Our 21.8% relative
improvement is significantly better than the state-of-the-art methods,
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Fig. 11. Some age estimation results made by NetCHL and NetD2C. NetD2C corrects some mistakes made by NetCHL and makes more accurate predictions.
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Fig. 12. The validation MAE of NetD2C on the Morph II dataset with different β.
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Fig. 13. The validation MAE of NetD2C on the WebFace dataset with different β.

Table 10
Comparison with the state-of-the-art methods on the Morph II dataset.

Methods Age MAE

BIF [13] 5.09
KPLS [16] 4.18
KCCA [53] 3.98
Ridge [51] 4.80
Tree-a-CNN [33] 3.61
Multi-scale-CNN [32] 3.63

Our D2C model NetD2C 3.06

Table 11
Comparison with the state-of-the-art methods on the WebFace dataset.

Methods Age MAE

BIF [13] 10.65
RF [54] 9.38
Ridge [51] 9.75
Tree-a-CNN [33] 7.72

Our D2C model NetD2C 6.04
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considering the difficulty of this dataset. The performance of our D2C
model indicates the effectiveness of our proposed cumulative hidden
layer and comparative ranking layer for human age estimation.

5. Conclusion

In this paper, we have proposed a deep cumulatively and compara-
tively (D2C) supervised age estimation model. To combat the sample
imbalance problem we proposed a novel cumulative hidden layer which
is supervised by a point-wise cumulative signal. By incorporating this
cumulative hidden layer, our model can not only learn from one face
itself but also from faces with nearby ages. This alleviates the sample
imbalance problem effectively. In order to learn more discriminative
aging features, we further propose a novel comparative ranking layer
which is supervised by a pair-wise comparative signal. This compara-
tive ranking layer facilitates aging feature learning and further im-
proves the age estimation performance. Our D2C age estimation model
is evaluated on two of the largest benchmark datasets and outperforms
the state-of-the-art by a large margin. The network used in this work is
relatively shallow compared with modern very deep architectures.
Future work will investigates the use of deeper networks to improve
estimates of age.
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