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ARTICLE INFO ABSTRACT

Given a face image, the problem of age estimation is to predict the actual age from the visual appearance of the
face. In this work, we investigate this problem by means of the deep learning techniques. We comprehensively
diagnose the training and evaluating procedures of the deep learning models for age estimation on two of the
largest datasets. Our diagnosis includes three different kinds of formulations for the age estimation problem
using five most representative loss functions, as well as three different architectures to incorporate multi-task
learning with race and gender classification. We start our diagnoses process from a simple baseline architecture
from previous work. With appropriate problem formulation and loss function, we obtain state-of-the-art
performance with the simple baseline architecture. By further incorporating our newly proposed deep multi-
task learning architecture, the age estimation performance is further improved with high-accuracy race and
gender classification results obtained simultaneously. With all the insights gained from the diagnosing process,
we finally build a deep multi-task age estimation model which obtains a MAE of 2.96 on the Morph II dataset
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and 5.75 on the WebFace dataset, both of which improve previous best results by a large margin.

1. Introduction

Age estimation, i.e., predicting the age from a face image, has long
been a challenging problem in computer vision, with many applications
like precision advertising, intelligent surveillance, face retrieval and
recognition. The main challenges of this problem come from the fact
that faces may be shot from people of different races, genders, and
under conditions of large pose variations, bad illuminations, and
spurious makeups [1]. Human beings ourselves can only give a very
rough estimation of the age by only looking at the face.

Classic age estimation methods usually involve two consecutive but
relatively independent procedures, feature extraction from the face
image and age estimation from the feature. The objective of the feature
extraction procedure is to extract invariant features representing the
aging information. Many different kinds of features have been used in
previous works, such as the local binary pattern (LBP) [2] and the
Gabor features [3]. With the extracted features, general machine
learning algorithms like the Support Vector Machine [4] can be used
to predict the age.

The age estimation accuracy of the above classic methods heavily
depends on the manually designed features and the employed learning
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algorithms. Both selections of the designed feature and learning
algorithm need many experiences and efforts. Recently, with the fast
development of Convolutional Neural Network (CNN), feature repre-
sentation and classification model can be effectively learned from end
to end. Although deep learning has been successfully applied to many
computer vision problems, there are very few studies on how to build a
high accuracy deep age estimation model, especially on digging out the
underlying oracles for building such a model.

To this end, we intend to perform a comprehensive diagnosis of the
deep learning models for the age estimation task, and try to find out the
most important and effective factors behind the building of the model.
To speedup training and testing of deep age models under different
configurations, we design a baseline architecture inspired by [5] as the
basic component to start the diagnosis process. Starting from this
baseline architecture, we have diagnosed different aspects to build the
deep age estimation model, including the types of model formulation,
the choices of loss function, as well as the strategies to incorporate
information like race and gender via multi-task learning. Our diagnos-
ing studies are helpful to getting better understandings of a deep age
estimation model. Moreover, by accumulating the insights from all
these investigations, we finally obtain a very deep age estimation model
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that outperforms all previous methods by a large margin.
Overall, the main contributions of this work can be summarized in
three-fold:

1. We have performed comprehensive diagnoses of the deep learning
models for the age estimation problem by investigating three
different kinds of formulations with five different loss functions to
find that the regression based formulation with MAE loss is the best
choice.

. We have proposed a new architecture for simultaneously performing
age estimation, gender and race classification which outperforms
other deep multi-task learning architectures.

. We have obtained a very deep age estimation model which sig-
nificantly outperforms all previous solutions on two of the largest
benchmark datasets.

We hope that these findings along with the whole diagnosing process
facilitate the deployment of deep age estimation models for real-world
applications.

2. Related work

Early works on age estimation are mainly focused on designing
robust aging features and selecting learning algorithms. Some features
are specifically designed for the age estimation problem, such as the
facial features and wrinkles [6], the learned AGES (AGing pattErn
Subspace) [7] features, as well as the biologically inspired features
(BIF) [8]. General texture description features like the Local Binary
Patterns (LBP) [2,9] and the Gabor feature [3] are also widely
employed for age estimation. Given the aging features, classification
models like linear SVM [8], Fuzzy LDA [3], Probabilistic Boosting Tree
[10], or regression models like Support Vector Regression [8], Kernel
Partial Least Squares [11], Neural Network [12] and Semidefinite
Programming [13] are explored to estimate the ages.

Early studies also find that, by incorporating other kinds of facial
traits like gender and race information, the performance of age
estimation can be substantially improved [14,10,15,1,16]. In the
experiments conducted by Guo [15], the age estimation error can be
reduced by more than 20% if trained separately on male and female.
Similar results are also reported from other previous works [10].
Therefore, joint analysis of these facial traits becomes a natural choice
for obtaining better age estimation results.

Recently, the deep learning models have been consistently demon-
strated as a very powerful framework for solving many computer vision
problems, e.g., image classification [17-19], object detection [20—22],
face verification [23,24], and facial attribute analyses [25,26]. The core
philosophy within the deep learning framework is to let the network
directly learn the feature representations and simultaneously train with
the prediction tasks from end to end, which helps the deep learning
models set new records for many vision tasks. Although with many
successes, deep learning models are still mostly thought hard to
implement and needs many tips and tricks [27]. To deploy the deep
learning models to facial age estimation, although a very few studies
have made some attempts [5,28,26], the performance gain obtained
from these studies are not as significant as those obtained on other
vision problems using deep learning models. Moreover, some of these
studies focus on some other objectives, e.g., providing a benchmark
dataset [5], or exploit complicated architectures, such as the 23 sub-
networks multi-scale architecture in [28], the 36 local sub-networks
tree-structured architecture in [26]. Therefore, we believe that the full
potentials of deep learning models for the age estimation problem are
still not fully explored, which motivates us to perform a comprehensive
diagnosis of the deep age estimation model to dig out its most
important parts.
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Table 1
List of abbreviations used in the diagnosing process.

Abbreviation Explanation

BF Black Female

BM Black Male

LDL Label Distribution Learning
OH One Hot

OR Ordinal Regression

WF White Female

WM White Male

3. Diagnosing deep age estimation models

We now introduce our comprehensive diagnosing process of the
deep learning based age estimation models. Model formulation and
model architecture are two of the most important components for a
deep age estimation problem. From model formulation perspective, we
have investigated different kinds of formulations for the age estimation
problem with the incorporations of commonly used loss functions for
each kind of formulation. From the other model architecture perspec-
tive, we have studied three different model architectures that incorpo-
rate multi-task learning from race and gender classification for the age
estimation problem. In the following, we first introduce the basic
settings for the diagnosing process. Then we elaborate our diagnosing
process on the model formulation and model architecture, respectively.
In Table 1, we list all the abbreviations used in our diagnosing process
for easy reference.

3.1. Diagnosing settings

To facilitate the diagnosing process, we provide here some basic
settings for the diagnosing process, including the architecture of the
baseline model, the selections of the benchmark datasets, and the
designation of the evaluation metrics.

3.1.1. A baseline deep architecture

The baseline architecture in the following diagnosing is illustrated
in Fig. 2, which has three convolutional layers and two fully-connected
layers. The input is a 227x227 color image with the mean image
subtracted. Specifically, the mean image is the mean of all the training
images. For example, if there are N images in the training set, each
image X; is a 3 x H X W tensor, where H and W are the height and
width of the image X;. The mean image I,,,cqr is then calculated as:
Lyean = 1IN Zi]\ilX,-, where the summation and multiplication are ele-
ment-wise operations. The first convolutional layer (Conv1) has 96 7x7
filters with a stride 4, followed by a 3x3 max pooling layer with a stride
2 and a local response normalization layer [17]. The second convolu-
tional layer (Conv2) has 256 5x5 filters, followed by a 3x3 max pooling
layer with a stride 2 and a local response normalization layer. The last
convolutional layer (Conv3) has 384 3x3 filters. Again, followed by a
3x3 max pooling layer with a stride 2. The last two layers (FC1 and
FC2) are two 512-D fully-connected layers. All the five layers are with
the Rectified Liner Units (ReLU) [17]. This baseline architecture is an
AlexNet [17] based architecture, which employs large size of convolu-
tion kernel and stride in the early layers and reduces their sizes
gradually as the layer goes deeper. Our choice of this architecture as the
baseline is initially motivated by the previous work [5] which employed
this architecture to perform age group classification and demonstrated
very good performance. Furthermore, as this baseline architecture is
relatively small, it can greatly speedup the diagnosing process and save
much time for both model training and testing. Based on these
considerations, we therefore employ it as the baseline architecture
for all the diagnosing process. It is worth noting that other modern
CNN architectures such as VGGNet [19] and GoogLeNet [29] with
smaller kernel size can be easily integrated into our final diagnosing
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Table 2
The number of images in the three splits of Morph II dataset.

Gender Race

Black White Others
Female S1:1285 S$2:1285 S3:3187 S1:1285 S2:1285 S3:31  S3:129
Male $1:3980 S2:3980 S3:28843 S1:3980 S2:3980 S3:39 S3:1843

model. We have performed this kind of experiments in our final
comparisons with the state-of-the-art methods in Section 4.6.

3.1.2. Age estimation datasets

There are many datasets for age estimation in the literature [30—
32]. Most of these datasets, however, are relatively small. Since training
a good deep neural network generally requires a large amount of
training data, we therefore select two of the largest benchmark datasets
to perform the diagnoses, the Morph II [33] dataset and the WebFace
[34] dataset.

Morph II Dataset: Morph II contains about 55,000 face images of
more than 13,000 subjects. Age ranges from 16 to 77 years old. Morph
II is a multi-ethnic dataset with additional gender and race labels. It
has about 77% Black faces and 19% White faces, while the remaining
4% includes Asian, Hispanic, Indian, and Other. Since Morph II is
highly unbalanced in terms of race and gender distributions, in order to
get a balanced training set, we follow the previous study [11] to split
this dataset into three non-overlapped subsets S1, S2 and S3 (see
Table 2). S1 and S2 are balanced in terms of race and gender
distributions after this split and being used as training set separately.
Specifically, in all experiments, the training and testing are repeated for
twice: 1) training on S1, testing on S2+S3 and 2) training on S2, testing
on S1+S3.

WebFace Dataset: The WebFace dataset contains 59,930 face
images. Age ranges from 1 to 80 years old. The WebFace dataset is also
a multi-ethnic dataset with additional gender labels. Unlike Morph II,
this dataset is captured in the wild environment, images contain large
pose and expression variations, which makes this dataset much more
challenging. Following [34], we conduct experiments on this dataset
using a four-fold cross validation protocol.

Some example face images in these two datasets are shown in
Fig. 1. As we can see, both datasets are very challenging and thus can
serve as very good benchmarks for evaluating the performance of age
estimation algorithms. We also show the age distributions of the
training set of both datasets in Fig. 3. As it can be observed from
Fig. 3, the age distributions of these two datasets are imbalanced at
some specific ages. For the Morph II dataset some classes are poorly
represented, e.g., ages above 60 have few training samples. This is
because the Morph II dataset is collected from people in a prison, most
of whom are younger than 60 years old. For the WebFace dataset, the
situation is much better than that in Morph II, and most of the classes
have more than 300 samples. This imbalanced problem has an impact
on the results of the deep age estimation models and we consider this
problem in all of our model training process. To alleviate the potential
bad effects from the imbalanced training samples, we employed an
“age-aware sampling” strategy which tried to make the mini-batch
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during each training iteration as uniform as possible. With this strategy
employed for all the diagnosed models in our paper, we believe the
diagnosing results of all the models are referable. We will describe the
“age-aware sampling” strategy in detail in Section 4.1.

3.1.3. Evaluation metrics

The most widely used evaluation metric for age estimation in the
literature is the Mean Absolute Error (MAE), which is defined as
follows,

R

MAE N ; 15— o
where N is the number of testing samples, y, is the ground truth age and
3 is the predicted age of the i-th sample. This MAE metric has been the
standard evaluation metric for the age estimation problem since the
very beginning of age estimation research [30]. This evaluation metric
has been widely employed in the previous works [8,11,16,34,26,28],
and in order to make a direct comparison with previous methods, we
therefore employ this metric as one basic metric in this paper.

Although widely adopted, the MAE metric has several shortcom-
ings. When evaluating a large testing set, improvements of some testing
samples may not make a significant difference on the MAE value,
especially when the MAE value is already very low. For most of the
testing samples, the compared deep age estimation models can all
produce correct predictions. The differences between different models
are their ability to deal with a small number of difficult testing samples.
These differences cannot be well reflected by MAE metric. Another
shortcoming of MAE is that it cannot reflect the distributions of the
estimation errors. To overcome these shortcomings, we design two
other metrics to evaluate and compare the performance of different age
estimation methods.

The first metric is Cumulative Correct Score (CCS) that is used to
compare multiple methods. CCS is defined as the number of test
images such that the absolute age estimation error is not higher than a
year threshold ¢, i.e.,

N
CCS(t) = Y h(l5 =yl = 1),
,; &)

Wy =4L I xs0
0, otherwise 3)

In practice, people are more concerned about age estimator's perfor-
mance at different thresholds than a single MAE number. So we can
study CCS at different thresholds to clearly locate the difference of
performance between multiple methods. For example, if the CCS of one
method at different thresholds are consistently larger than other
methods, we can conclude that this method performs better than
others.

The second metric is the Relative Cumulative Correct Score (RCCS)

which is specifically used to compare two methods. RCCS is defined as,
RCCSY(r) = CCS(r) — CCSP(1), 4)

where CCS? is the CCS of method a, CCS” is the CCS of method b. From
RCCS we can clearly see which method is better at different thresholds.
Both of the above two metrics can reflect the error distribution of the

A& - el

2 Aw-

Fig. 1. Some example face images in the two benchmark datasets used in this paper. The images in the top row are from the Morph II dataset, and the images in the bottom row are from
the WebFace dataset. As we can see, age estimation is a challenging task in computer vision. Even for human beings ourselves, it is very difficult to tell the accurate age from a face image.
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Fig. 2. The baseline architecture employed in our diagnosing process. This architecture is mainly motivated from the AlexNet architecture [17], which is one of the most famous modern
deep learning architecture, and the one used in the Adience benchmark [5], which demonstrate good performance for age group classification firstly using a deep architecture. This

relatively simple and shallow architecture also greatly speeds up the diagnosing process.

method and thus are more intuitive and expressive than a single MAE
number.

3.2. Model formulation

Age estimation can be formulated as a multi-class classification
problem, a regression problem, or a ordinal regression problem. In this
part, we intend to diagnose the effects of these three different types of
formulations in the deep learning framework, which has not been
explicitly studied by previous work to the best of our knowledge.

3.2.1. Classification formulation for age estimation

Since deep learning models have demonstrated superior perfor-
mance for many classification problems [17,29], age estimation can be
directly formulated as a classification problem by discretizing age in
possible year ranges, e.g., between 0 and 80 years in the WebFace
dataset. To deploy this formulation into the CNN model, we need to
employ a softmax activation function in the output layer and append a
classification loss to it.

One-hot encoding based method. The most widely used
classification based age estimation method is to use one-hot encoding
to represent the age label, and the Softmax loss is adopted as the
training objective. Denote the i-th image sample as X, the sample's age
label as y;, and the training dataset as X = {X|, yl.}f-il, ye{l,..C},
where C is the number of different age labels. The Softmax loss is
defined as follows:

1 N
L(X)=~-—= ) y logp,,
N Z} e (5)

where p, is the predicted C-dimensional probability vector for X; by the
CNN, p,, is the y;-th element of p,, and y, is the one-hot encoding of y;,

ie., Yy = 1 and O otherwise.

500 T i : . :

400
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(a) Age distribution of the training set of
Morph II dataset.

Label distribution based method. It is noted that in the one-
hot encoding based methods, the ages are treated as independent from
each other. To consider the correlations between face images with
different ages under the classification framework, [35] proposed a label
distribution learning method for age estimation. The general idea is
extending the one-hot encoding of one face image to a label distribu-
tion. In this work, we use the Gaussian label distribution. For the i-th
face image X, with age label y;, then the k-th dimension of the
corresponding target label distribution is defined as follows:

I k=y)?
d, = exp| — “ k=1, ..,0C,
*T sd2nz xp[ 262 (6)

where o is the standard deviation of the Gaussian distribution, and Z is
a normalization factor that makes sure Y, d; = 1, i.e,

1 k=-y°
27 ;exp[— 267 ] @)

The training objective is defined as follows based on the cross-entropy
loss:

Z=

N C

LX) =- d;logp,,

1
NS& 8

~

3.2.2. Regression formulation for age estimation

The age of an individual is measured by the time passed from the
individual's birth, and thus is a continuous value. Therefore, the age
estimation problem can also be naturally formulated as a regression
problem where the objective becomes to find a regression function that
can model the aging process in terms of the feature space. This kind of
formulation provides a more natural and accurate formulation than the
classification formulation and has fewer parameters in the output layer

2500 : : : : . . .

2000 1

1500 1

1000

Number of Images

500

0 10 20 30 40 50 60 70 80
Age

(b) Age distribution of the training set of
WebFace dataset.

Fig. 3. Age distributions of the training set of both datasets used in this work.
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(i.e., one neuron vs. C neurons). To deploy this formulation into the
CNN model, we only need to employ a linear activation function in the
output layer and append a regression loss to it.

MSE based method. When formulating age estimation as a
regression problem, the Mean Squared Error (MSE) loss can be used
as the training objective, which is defined as follows:

w5
LX) =— )
X) N;w » ©
where 3] is the prediction and y, is the ground truth age. This MSE loss
has very nice mathematical properties like convexity and being
continuously differentiable, which makes it widely used in regression
based age estimation and many other regression problems.
MAE based method. Besides the MSE loss, we find that the Mean
Absolute Error (MAE) can potentially provide a better loss for a deep
age estimation model, which is defined as follows:

1w

LX) sz 3 w0
The main inspiration behind is that the performance of an age
estimation model is evaluated using the MAE metric (Eq. (1)). Using
this evaluation metric as the loss function for the deep model provides
a more straightforward objective for end-to-end model training. To our
knowledge, MAE is not directly used as the loss function in previous
work for age estimation. The main reason for this may be that the MAE
loss is not a smooth function, which makes it hard to optimize for
traditional age estimation methods. With recent developments of
optimizing non-smoothing functions like ReL.U [17] and PReLU [18]
in the deep learning framework, the MAE loss function can be
optimized effectively using the stochastic gradient descent algorithm.

3.2.3. Ordinal regression formulation for age estimation

The human face matures in different ways depending on the
person's age. For example, facial aging effects appear as changes in
the shape of the face during childhood and changes in skin texture
during adulthood. Based on this observation, previous works [36,37]
argue that it is difficult for regression based methods to handle this
aging pattern non-stationary problem, and suggest using ordinal
regression based methods for age estimation. In this work, we also
diagnose this ordinal regression formulation for age estimation using
CNN.

Ordinal regression can be considered an intermediate problem in
between regression and classification. The most successful and widely
used algorithm to solve the ordinal regression problem is to transform
it into a series of simpler binary classification subproblems [38,39]. For
each agek € {1, 2, ..., C — 1}, a binary classifier is trained according to
whether the age of a face is larger than k. Then the age of a test face is
predicted based on the classification results of these C — 1 binary
classifiers. Specifically, given the original training face images
X ={X, y;.}fi o for the k-th binary classification subproblem a specific

training data is constructed as Xk = {X,, y,.k};il, where yl." € {0, 1} is the
label indicating whether the age of the i-th face image is larger than k.
Training on this X* one can obtain the k-th binary classifier fi.. After
obtaining all these C — 1 binary classifiers, for a given test face image
X, the predicted age b is calculated as follows:

C-1

5=1+ X LX),

k=1

an

where f, (X)) is the binary classification result for X; by fx.

One may notice that this approach has the problem of unbalanced
classes. For example, for the age C — 1, almost all examples will be of
the class less than C — 1 years. We tackle this problem from two
perspectives. First, from the network structure, we adopt one network
to collectively implement all these C — 1 binary classifiers in our
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experiments. In particular, our network has a multiple-output structure
where each output corresponds to a binary classifier. Thus, these C — 1
classification sub-problems (tasks) are simultaneously trained in an
end-to-end manner. So, these tasks can learn and benefit from each
other. For example, the tasks with balanced classes may help the
learning of tasks faced with unbalanced problems. Second, from the
training process, we try to make the mini-batch as uniform as possible
(same amount of positive and negative samples) for each task during
network training, which can alleviate the unbalanced problem to some
extent.

3.3. Model architecture

Besides the model formulation, the model architecture is also very
important for the deep age estimation problem. For the model
architecture, we mainly study the different ways to design the
architecture to incorporate multi-task learning for more effective age
estimation. Since age, gender, and race are three closely related facial
traits of a human, early studies on age estimation suggest that
incorporating these three different kinds of traits together can improve
the results of age estimation [10,16]. Moreover, it will be very
beneficial to use a single network in a practical system which can save
much computation and memory. These facts naturally motivate us to
investigate multi-task learning of gender, race, and age to obtain
additional performance gain. To perform multi-task learning of age,
gender, and race upon the baseline architecture, we will introduce three
different multi-task learning architectures in the following.

3.3.1. Parallel multi-task learning architecture

The parallel multi-task learning architecture fuses the different
tasks concurrently and has been widely adopted in previous deep
learning models [24,40,25,22]. This type of architecture has show very
good performances in problems like face recognition [24,40] and object
detection [21,22].

To deploy this multi-task learning strategy to the baseline archi-
tecture, we attach three fully-connected layers to the last layer (i.e.,
FC2) of the baseline architecture (Fig. 4(a)). Each fully-connected layer
is then followed by a loss function designed for the task. The weights
W, ..., W; associated with the first five layers are shared by all the three
tasks. Wg, Wy, and W,. are the task specific parameters. Denote the
training dataset as X = (X, 3", »/, »* }f_\i " where y“;, y";, and y9; are
the labels for age, race and gender, respectively. The loss for the
parallel multi-task learning model is defined as follows:

N
LX) =L+ al® + L = % D IF — g - a% 3> yElogs,

i=1 i=1 k=1

=
o

1 r r
- ﬁﬁ ‘ yikIOgFik’

i

1k (12)

where a and f are hyper-parameters to tune the importance of each
task, F{ is the predicted age for the i-th sample, F¥ is the predicted
gender probability vector of the i-th sample, F¥ is the k-th element of
Ff, and y§ = 1 if the i-th sample has gender label k and O otherwise.
The meanings of F}, Fj, y/, are similar for race, and C,. is number of
race labels. Note that here we use the MAE loss for the regression based
age estimation task (F{ is a scalar), and Softmax loss for the race and

gender classification tasks.

3.3.2. Deeply supervised multi-task learning architecture

The deeply supervised multi-task learning architecture fuses differ-
ent tasks progressively in different layers, which is inspired by previous
work like deeply supervised nets [41] and many other variants like
GoogLeNet [29] and DeepID2 [24]. This kind of architecture has also
demonstrated performance improvement on tasks like image classifi-
cation.

To deploy this multi-task learning strategy to the baseline archi-



J. Xing et al.

Feroup
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Max
Pooling

Inner
Product

Inner
Product

Max
Pooling

Dropout

ConvBlockl  ConvBlock2 ConvBlock3  FCBlock1 FCBlock 2 FCBlock 3

(d) Internal structure of each computational block.

Fig. 4. Illustration of our three multi-task learning architectures. F denote the
intermediate layer outputs and W are the weights for each computational block.
Computational blocks of the same type are shown in the same color. Fig. 4(d) shows
the internal structure of each kind of block. For example, the Convl and FC1 in Fig. 4(a)
are instantiations of “Conv Block 1” and “FC Block 1” in Fig. 4(d), respectively. We use a,
g, and r to denote age, gender and race. Best viewed in color.

tecture, we add supervision branches after certain intermediate layers
for gender and race classification tasks. Age estimation is done at last
layer, which is similar to the parallel architecture. Please see Fig. 4(b)
for more details. The intuition behind the deeply supervised multi-task
learning architecture is that the three tasks (age, gender, race) are not
of the same difficulty. Age estimation is more difficult than the other
two tasks, and it requires more layers of abstractions with large
capacity. Therefore, the loss function for the age estimation is
connected to the highest-level features. The race classification task on
Morph II only involves black and white people, which is relatively easy
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to distinguish based on only low-level features (e.g., color and texture),
it is thus connected to the first convolutional layer. Gender classifica-
tion is slightly more difficult than race classification, so it requires
slightly higher-level features and is connected to the second convolu-
tional layer. Since feature maps at lower convolutional layers may be
noisy and not discriminative enough, following [41], we add a
dimensionality reduction layer (e.g., Conv, and Conv, layers with kernel
size 1x1 in Fig. 4(b)) and two discriminative non-linear mapping layers
before the final classification. The overall loss is the same as the parallel
architecture discussed above, and the network is trained using sto-
chastic gradient descent algorithm.

3.3.3. Hybrid multi-task learning architecture

Although the above two architectures use gender and race informa-
tion, they do not consider the relationship between tasks. Previous
studies on age estimation [15] suggest that age estimation can be
influenced by the gender and race differences dramatically, i.e., age
estimation errors can be increased when across gender and/or race.

Inspired by these findings, we further propose a hybrid multi-task
learning architecture for age estimation by explicitly incorporating this
prior knowledge into the network architecture. See Fig. 4(c) for more
details. This architecture mainly comprises of four parts: 1) shared part
(i.e., Convl and Conv2), 2) race gender group (i.e., BF, BM, WF, WM)
classification part, 3) group specific age estimation part, and 4) a fusion
layer that fuses the prediction made by each group specific age
estimator.
F&°'P is the output of group classification part indicating the probability
of an input belonging to each race gender group. Each of the group
specific age estimator part excels in estimating the age of images
belongs to one specific race gender group. After we obtain the group
probabilities F&"P and all high accurate group specific age predictions
(ie., B, ..., F*™) for an input, we employ the average fusion strategy
to get the final prediction F* as follows:

F¢ = F%rouka’
ke {BF,BM,WF,WM}

13)

where F{" is the element of F*" corresponding to race gender group
k.

To train the hybrid multi-task age estimation model, we design a
three-step procedure: 1) Pre-training race gender group classification
part using all the training data; 2) Pre-training group specific age
estimation part using group specific training data; and 3) Fine-tuning
the whole network from end to end using all the training data. The
testing procedure is simple, we can use Eq. (13) to obtain the final age
estimations. We can also obtain the race and gender predictions from
the group classification part easily.

4. Results and analyses

In this section, we first describe some details about our experi-
mental settings. Then, we give the experimental results on different
model formulations and different multi-task architectures. We will also
analyze the model depth for age estimation. Finally, we compare our
best model with the state-of-the-art age estimation methods.

4.1. Experimental settings

The face images in the dataset were preprocessed in a standard way,
i.e., the faces in the images are detected and aligned, then cropped and
normalized to 256x256. For all the following experiments, we use the
Caffe [42] toolbox, which provides a flexible framework to develop new
deep learning models, and makes our work easy to reproduce. All the
model protocol files and training results in our experiments will be
released in the Caffe model zoo. We train all the network using mini-
batch (set to 128) stochastic gradient descent with momentum (0.9)
and weight decay (5 x 107). For all fully-connected layers we use a
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dropout ratio of 0.5. We use data augmentation similar to [17], i.e.,
randomly cropping of 227x227 pixels from the 256x256 input face
images, then randomly mirroring it before feeding it to the network.
The initial learning rate is 1072, We divide the learning rate by 10 every
10,000 iterations, and training stops at 50,000 iterations. These hyper-
parameters are chosen based on a hold-out validation set. We found
that all the networks converge well under these settings, so we use the
same parameters for different models to make fair comparisons
between different methods.

As shown in Fig. 3, the datasets used in this paper are imbalanced
at some specific ages. To alleviate its impact on the results of deep age
estimation models, we apply an “age-aware sampling” strategy during
training. In practice, we use two types of lists, one is age list, and the
other is per-age face image list. At each iteration during training, we
first sample an age M in the age list, then sample a face image in the
per-age face image list of age M, and repeat this process multiple times
to create a mini-bath. When reaching the end of the per-age face image
list of age M, a random shuffle operation is performed to reorder the
face images of age M. When reaching the end of age list, we also
perform a random shuffle operation to reorder the ages. With this
sampling strategy for the mini-batch based training process, we can get
a mini-batch as uniform as possible with respect to ages, and thus
alleviate the imbalanced problem to some extent.

4.2. Analyses of classification based deep age estimation methods

To study the classification formulation for age estimation using
CNN, we train two models Netyy; and Net;, from the baseline
architecture (Fig. 2). Netgy is based on the One-Hot encoding and
Net,,, is based on the Label Distribution Learning introduced in
Section 3.2.1. The age estimation results of these two models on both
datasets are shown in Tables 3, 4.

We can clearly see that Net, j,; outperforms Netyy on both datasets.
This is because in Nety, the age labels are assumed to be independent
to one another. However, Net, ,, considers the correlations between
different ages. These results show that it is better to use label
distribution learning for classification based deep age estimation.

4.3. Analyses of regression based deep age estimation methods

To study the regression formulation for age estimation using CNN,
we train two models Netyqr and Nety; o from the baseline architecture.
Netys is based on the Mean Squared Error and Nety,,p is based on the
Mean Absolute Error introduced in Section 3.2.2. The age estimation
results of these two models on Morph II and WebFace datasets are
shown in Tables 3, 4.

We can see that Nety, is better than Netygz on both datasets.
There are two reasons to explain these results. First, the MAE loss is
more robust to outliers than the MSE loss, which is very important in
practice, because label noises are inevitable in real-world datasets. For
example, the WebFace dataset contains many more label errors than
the Morph II dataset, so the performance gap between Nety;,; and
Netyg is larger on WebFace dataset than on the Morph II dataset.

Table 3
The age estimation results of the three different formulations on Morph II dataset using
the training and testing set split protocol in Table 2.

Method s2+s3 s1+s3 Average MAE
MAE MAE
Classification based methods  Netgy 3.85 3.89 3.87
Netipr  3.48 3.49 3.49
Regression based methods Netyisg ~ 3.44 3.43 3.44
Netyap  3.40 3.39 3.40
Ordinal regression based Netogr 3.46 3.48 3.47

method
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Table 4
The age estimation results of the three different formulations on WebFace dataset using
the four-fold cross validation protocol.

Method Fold1 Fold2 Fold3 Fold4 Average
MAE MAE MAE MAE MAE

Classification Netoy  6.65 6.76 6.63 6.64 6.67
based methods  Net;p;  6.20 6.24 6.10 6.26 6.20

Regression based  Netygg ~ 6.40 6.46 6.30 6.44 6.40
methods Netyjap  6.12 6.13 5.99 6.22 6.12

Ordinal Netog ~ 6.19 6.28 6.20 6.30 6.24
regression

based method

Second, MAE is the evaluation metric for age estimation algorithm (see
Eq. (1)), so directly optimize this MAE loss can improve the age
estimation performance. For example, even though the Morph II
dataset was complied in a controlled environment and has few label
errors, Nety 4 Which directly optimizes the final evaluation metric still
performs better than Nety: on this dataset.

Since the widely adopted Morph II benchmark is collected in
controlled environment, the performance on it is already very high.
For most of the testing samples, the compared deep age estimation
models can all produce correct predictions, and improvements of some
hard testing samples may not make a significant difference on the MAE
value. In order to better show the gain in performance of Nety;, over
Netysg, we use our RCCS metric (Eq. (4)) to compare Nety,; and
Netyse- The results are show in Fig. 5. We can see that Nety;, can make
more correct predictions than Netyg at all the thresholds (from 0 to 6
years) since all the numbers in Fig. 5 are positive numbers.

Thanks to this MAE loss function which is not only robust to
outliers but also can be used directly to optimize the evaluation metric,
this regression based methods Nety,r outperforms both classification
based methods Netqy and Net; ;,, on both datasets. This also validates
the philosophy of deep learning, i.e., direct optimization of what you
want can always improve the performance.

4.4. Analyses of ordinal regression based deep age estimation
methods

We use Netyg to denote the Ordinal Regression based deep age
estimation model introduced in Section 3.2.3. From the age estimation
results in Tables 3, 4, we can see that Net,z performs better than Netyy
and is comparable to Net, ;,; . Surprisingly, the regression base methods
Netyap still outperforms Nety; on both datasets. We also plot the age
estimation performances at different testing ages on both datasets for
Net; pr, Netyag and Netor which are representative methods of classi-

500

RCCS

Threshold

Fig. 5. The RCCS between Netyzg and Netygg on Morph II dataset.
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Fig. 6. Age estimation performances of Net; p; , Netor and Netyag at different testing
ages on Morph II dataset.
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Fig. 7. Age estimation performances of Net iy , Netgr and Netya at different testing
ages on WebFace dataset.

fication, regression, and ordinal regression based methods, respec-
tively. The results are show in Figs. 6 and 7. We can see that the
difficulties of age estimation from different ages are not the same. The
MAE of the young people are smaller than that of the adult people. The
reason for this can be explained as follows. From birth to adulthood,
the greatest change of the face is the craniofacial growth, and during
adult aging, the most perceptible change becomes texture change which
is subtler than the craniofacial growth. Therefore, it is more difficult to
estimate the age for the adult people than for the young people, and
this fact is also true for our human beings. We can also see that Nety;,p
performs better than Net, ,; and Netq, at most of the different testing
ages.

As mentioned in Section 3.2.3, previous works argue that it is
difficult for regression based age estimation methods to handle the
aging pattern non-stationary problem and it is better to use ordinal
regression based methods. In this work, we show that this claim may
not be true under the deep learning framework. Fig. 8 shows the output
responses of the first convolutional layer of the regression based deep
age estimation model Nety,z on two face images. We can see that for
the young face (Fig. 8(a)), most of the features extracted by Nety
contain shape information (see the facial contours in Fig. 8(b)). While
for the old face (Fig. 8(c)), the Nety,r model can extract rich texture
features (see the wrinkles in Fig. 8(d)). These intuitive visualizations
demonstrate that the regression based deep model Nety;,; can learn
this non-stationary aging process automatically and effectively.

Based on the above analysis of the three formulations for age
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(b) Responses for Face(a).

(d) Responses for Face(c)

Fig. 8. Visualizing output of the first convolutional layer of Nety;og. For the input faces
(a) and (c), (b) and (d) show the output responses of the first convolutional layer of
Netyag for these two faces respectively. The first convolutional layer of Netyjs contains
96 feature maps, whose outputs are shown here on a 10x10 grid.

estimation using CNN, we can see that the regression based deep model
Netyap is the most promising one despite of its simplicity. Compared
with Netyy which assumes that each age is independent from other
ages, Nety;,p provides a natural formulation which takes account of the
continuous nature of age. Compared with Netyp, Nety,p is more
robust to outliers which is very important in read-world datasets.
Compared with Net; ,; and Netqg, Nety4g can not only directly optimize
the final evaluation metric but also can automatically capture the non-
stationary aging process and thus obtains competitive results.

4.5. Analyses of multi-task learning with race and gender
classification

Since the regression formulation with MAE loss function works best
in our experiments, we use it by default in this set of experiments. Note
that our Nety,; has already beaten other state-of-the-art methods on
both datasets. We are curious about whether using multi-task learning
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Table 5
The results of our three multi-task learning architectures on Morph II dataset.

Pattern Recognition 66 (2017) 106—-116

Method Training Set Testing Set CCS(0) CCS(1) CCS(2) CCS(3) CCS(4) MAE (yrs.) Average MAE (yrs.)
Netyag S1 S2+S3 4642 13676 21316 27400 32194 3.40 3.40
S2 S1+S3 4734 13741 21564 27621 32341 3.39
Parallel architecture Netp, e S1 S2+S3 4627 13575 21547 27499 32154 3.42 3.43
S2 S1+S3 4682 13557 21478 27397 32185 3.43
Deeply supervised architecture Netpeepy S1 S2+S3 4684 13649 21363 27435 32036 3.40 3.42
S2 S1+S3 4751 13707 21196 27264 32088 3.43
Hybrid architecture Netyypig S1 S2+S3 4720 14013 21758 27924 32738 3.32 3.31
S2 S1+S3 4814 13973 21825 28080 32871 3.30
Table 6
The results of our three multi-task learning architectures on WebFace dataset.
Method Testing Fold CCS(0) CCS(1) CCS(2) CCS(3) CCS4) MAE (yrs.) Average MAE (yrs.)
Netyag Fold1 1372 4017 5942 7296 8403 6.12 6.12
Fold2 1427 4089 5990 7345 8466 6.13
Fold3 1442 4137 6117 7534 8576 5.99
Fold4 1345 4067 5995 7323 8412 6.22
Parallel architecture Netp, ¢ Fold1 1322 3932 5904 7314 8419 6.16 6.15
Fold2 1347 4046 5941 7342 8437 6.17
Fold3 1405 4072 6015 7482 8602 6.05
Fold4 1355 3954 5892 7320 8441 6.23
Deeply supervised architecture Netpeepy Fold1 1350 3953 5965 7343 8485 6.13 6.15
Fold2 1346 3975 5870 7227 8342 6.20
Fold3 1400 4042 6098 7512 8588 6.05
Fold4 1351 3955 5859 7291 8446 6.22
Hybrid architecture Netyypig Fold1 1813 4504 6399 7695 8667 6.03 6.03
Fold2 1790 4438 6312 7674 8701 6.08
Fold3 1777 4453 6359 7785 8871 5.91
Fold4 1751 4290 6212 7589 8660 6.08
with race and/or gender information can further improve the perfor- Table 7

mance of age estimation. Tables 5, 6 show the results of our three
multi-task learning architectures introduced in Section 3.3 on both
datasets.

From the MAE evaluation metric, we can see that the parallel
architecture Netp, ., is comparable to or slightly worse than the single
task model Nety,z, which is also reported in [28]. Deeply supervised
architecture Netp,,,, is slightly better than Netp,,.;, but again shows no
improvement over the single task model Net,, 5. These results suggest
that simply inserting multiple loss functions to the network and forcing
it to learn from each other dose not work well on age estimation. Our
proposed hybrid architecture Netyy,q, on the contrary, works better
than the other two architectures and shows improvements over the
single task model Nety,g-

From our new CCS metric (Eq. (2)), we can also see that the Netyyprig
obtains the largest CCS at different thresholds (from O to 4 years) on
both datasets. These results demonstrate that our hybrid architecture
can make more accurate predictions which is very important for
practical use. The main reason behind this is that our hybrid
architecture considers the relationship between tasks, and encodes
this information directly into the network design.

4.6. Analyses of the model depth for age estimation

Very deep CNNs, such as VGGNet [19] and GoogLeNet [29] have
achieved great success for many computer vision tasks. Since our
baseline architecture in Fig. 2 is relatively shallow compared to these
very deep architectures, we are curious about whether using these very
deep architectures can further improve the performance of age
estimation. Based on this consideration, we train another mode
NetXfﬁid which is a hybrid multi-task architecture based on the very
deep VGGNet. Compare to our baseline architecture which is shallow
(3 convolutional layers) with large kernel size (7x7), the VGGNet is
deeper (16 layers) with smaller kernel size (3x3). Tables 7, 8 show the
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The age estimation results of Netyy,iq and NetXSbG,id on Morph II dataset using the
training and testing set split protocol in Table 2.

Method S2+S3 MAE S1+S3 MAE Average MAE
Netyybria 3.32 3.30 3.31
Ne[]\_’ﬁ&d 2.96 2.95 2.96

Table 8

The age estimation results of Netyyyig and NethG}Eid on WebFace dataset using the four-
fold cross validation protocol.

Method  Foldl MAE Fold2 MAE Fold3 MAE Fold4 MAE Average MAE
Netyybia ~ 6.03 6.08 591 6.08 6.03
NetX?Sid 5.72 5.78 5.70 5.80 5.75

VGG

age estimation results of Netj;;y on both dataset. We can see that

Netgﬁgid based on the very deep VGGNet performs much better than
Netyypyiq Which is based on the shallow baseline architecture. These
results demonstrate that using deeper model with smaller convolu-
tional kernel size can further improve the age estimation performance.

4.7. Analyses of age estimation accuracy under different races and
genders

We use Morph II dataset to analysis the age estimation accuracy for
people of different races and genders, since this dataset has both race
and gender labels. The results are show in Fig. 9. We can see that the
MAE of white people is smaller than that of black people. The main
reason behind this is that it may be easier to detect the facial
appearance changes of white people than those of black people. We
can also see that the MAE of male is smaller than that of female, this is
because males and females may have different face aging patterns.
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Fig. 9. The age estimation results of NC‘X?b?id for different races (Black vs. White) and

genders (Female vs. Male) on Morph II dataset.

Table 9
Comparison with the state-of-the-art methods on Morph II dataset.

Methods Gender Accuracy Race Accuracy Age MAE
BIF [8] 96.6 - 5.09
KPLS [11] 98.4 98.9 4.18
KCCA [16] 98.5 99.0 3.98
Ridge [34] 97.7 - 4.80
Tree-a-CNN [26] 98.4 - 3.61
Multi-scale-CNN [28] 98.0 98.6 3.63
Netﬁ?gid 98.7 99.2 2.96
Table 10
Comparison with the state-of-the-art methods on WebFace dataset.
Methods Gender Accuracy Age MAE
BIF [8] 79.3 10.65
RF [43] - 9.38
Ridge [34] 87.0 9.75
Tree-a-CNN [26] 89.7 7.72
Ne[Xbe?id 92.3 5.75

Many female faces may potentially show younger appearances than
male face due to the different extent in using makeups and accessories
[1], and this fact makes it more difficult to estimate the age of females.

4.8. Comparison with the state-of-the-art methods

Tables 9, 10 compare our best model (i.e., Netﬁﬁ,cr'id) with several
recently published methods on Morph II and WebFace datasets. All of
the methods evaluated in this section are using the same training and
testing set partition protocol which is discussed in Section 3.1.2 for fair
comparisons. Our results outperform all the other state-of-the-art
methods on both datasets by a large margin. On the Morph II dataset,
our best model reduces MAE by 0.65 years which is a significant
improvement. To the best of our knowledge, this is for the first time an
MAE below 3 years has been obtained on the Morph II age estimation
dataset.

On the WebFace dataset, our model improves the best results by
about 2 years. Since the WebFace dataset is built from faces in the wild,
few methods conducted experiments on this challenging dataset. We
have compared our model to all other published results we can find on
this dataset, including the latest one in [26]. Our 1.97 years reduction
of MAE is a significant improvement over the state-of-the-art methods
considering the difficulty of this dataset. This competing performance
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of our model indicates the effectiveness of our diagnoses in model
formulation, loss function, multi-task learning architecture, and model
depth for age estimation.

5. Conclusion and future work

In this paper, we investigate the deep learning based age estimation
problem. We have performed in-depth diagnoses of the deep learning
models for the age estimation problem. Started from a simple baseline
architecture, we have progressively improved its performance by
investigating three different kinds of formulations of the model using
five different loss functions, as well as the model architecture design for
multi-task learning. By accumulating all these findings, we finally
obtain a very deep age estimation model with high prediction accuracy.
We hope these findings and results to be useful for the research and
application of the deep age estimation techniques.

In our future work, we plan to study the age estimation problem
regarding to a specific age group or a specific person, using the deep
learning models. For the age-specific age estimation problem, we need
to find a principled way to learn age-dependent optimization objectives
for the deep age estimation model. For the person-specific age
estimation problem, we plan to design some transfer learning based
mechanism to adapt the knowledge learned from a general deep age
estimation model to a dedicated deep age estimation model for a
specific person.
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